Windows 1251 сколько бит на один символ

Материал из РУВИКИ — свободной энциклопедии

Windows-1251
Описывается по ссылке iana.org/assignments/cha…
msdn.microsoft.com/en-us…
microsoft.com/typography…
unicode.org/Public/MAPPI…
unicode.org/Public/MAPPI…
ibm.com/docs/en/db2/11.5…

Windows-1251 — набор символов и кодировка, являющаяся стандартной 8-битной кодировкой для русских версий Microsoft Windows до 10-й версии. В прошлом пользовалась довольно большой популярностью. Была создана на базе кодировок, использовавшихся в ранних «самопальных» русификаторах Windows в 1990—1991 гг. совместно представителями «Параграфа», «Диалога» и российского отделения Microsoft. Первоначальный вариант кодировки сильно отличался от представленного ниже в таблице (в частности, там было значительное число «белых пятен»). Но, однако был вариативным и представленным в 6 формах применения.

В современных приложениях отдаётся предпочтение Юникоду (UTF-8). На 1 апреля 2019 лишь на 1 % всех веб-страниц используется Windows-1251.[1]

Windows-1251 выгодно отличается от других 8‑битных кириллических кодировок (таких как CP866, KOI8-R и ISO 8859-5) наличием практически всех символов, использующихся в русской типографике для обычного текста (отсутствует только значок ударения); она также содержит все символы для других славянских языков: украинского, белорусского, сербского, македонского и болгарского.

Windows-1251 имеет два недостатка:

  • строчная буква «я» имеет код 0xFF (255 в десятичной системе). Она является «виновницей» ряда неожиданных проблем в программах без поддержки чистого 8-го бита, а также (гораздо более частый случай) использующих этот код как служебный (в CP437 он обозначает «неразрывный пробел», в Windows-1252 — ÿ, оба варианта практически не используются; число же -1, в дополнительном коде длиной 8 бит представляющееся числом 255, часто используется в программировании как специальное значение). Тот же недостаток имеет и KOI8-R, но в ней 0xFF есть заглавный твёрдый знак, который применяется редко (только при написании одними лишь заглавными буквами).
  • отсутствуют символы псевдографики, имеющиеся в CP866 и KOI8 (хотя для самих Windows, для которых она предназначена, в них не было нужды, это делало несовместимость двух использовавшихся в них кодировок заметнее).

Также как недостаток может рассматриваться отдельное расположение буквы «ё», тогда как остальные символы расположены строго в алфавитном порядке. Это усложняет программы лексикографического упорядочения.

Синонимы: CP1251; ANSI (только в русскоязычной ОС Windows).

Первая половина таблицы кодировки (коды от 0x00 до 0x7F) полностью соответствует кодировке ASCII. Числа под буквами обозначают шестнадцатеричный код подходящего символа в Юникоде.

Кодировка Windows-1251[править | править код]

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
 
8.
 
Ђ
402
Ѓ
403

201A
ѓ
453

201E

2026

2020

2021

20AC

2030
Љ
409

2039
Њ
40A
Ќ
40C
Ћ
40B
Џ
40F
 
9.
 
ђ
452

2018

2019

201C

201D

2022

2013

2014

2122
љ
459

203A
њ
45A
ќ
45C
ћ
45B
џ
45F
 
A.
 
 
A0
Ў
40E
ў
45E
Ј
408
¤
A4
Ґ
490
¦
A6
§
A7
Ё
401
©
A9
Є
404
«
AB
¬
AC
­
AD
®
AE
Ї
407
 
B.
 
°
B0
±
B1
І
406
і
456
ґ
491
µ
B5

B6
·
B7
ё
451

2116
є
454
»
BB
ј
458
Ѕ
405
ѕ
455
ї
457
 
C.
 
А
410
Б
411
В
412
Г
413
Д
414
Е
415
Ж
416
З
417
И
418
Й
419
К
41A
Л
41B
М
41C
Н
41D
О
41E
П
41F
 
D.
 
Р
420
С
421
Т
422
У
423
Ф
424
Х
425
Ц
426
Ч
427
Ш
428
Щ
429
Ъ
42A
Ы
42B
Ь
42C
Э
42D
Ю
42E
Я
42F
 
E.
 
а
430
б
431
в
432
г
433
д
434
е
435
ж
436
з
437
и
438
й
439
к
43A
л
43B
м
43C
н
43D
о
43E
п
43F
 
F.
 
р
440
с
441
т
442
у
443
ф
444
х
445
ц
446
ч
447
ш
448
щ
449
ъ
44A
ы
44B
ь
44C
э
44D
ю
44E
я
44F
  • Таблица основного кода ASCII

  • Таблица расширенного кода ASCII

Другие варианты[править | править код]

(Показаны только отличающиеся строки, поскольку всё остальное совпадает)

Официальная кодировка Amiga-1251 (Amiga Inc., 2004 г.)[править | править код]

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
 
A.
 
 
A0
¡
A1
¢
A2
£
A3

20AC
¥
A5
¦
A6
§
A7
Ё
401
©
A9

2116
«
AB
¬
AC
­
AD
®
AE
¯
AF
 
B.
 
°
B0
±
B1
²
B2
³
B3
´
B4
µ
B5

B6
·
B7
ё
451
¹
B9
º
BA
»
BB
¼
BC
½
BD
¾
BE
¿
BF

Официальная кодировка KZ-1048 (казахский стандарт)[править | править код]

Данная кодировка утверждена стандартом СТ РК 1048—2002 и зарегистрирована в IANA как KZ-1048 [1].

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
 
8.
 
Ђ
402
Ѓ
403

201A
ѓ
453

201E

2026

2020

2021

20AC

2030
Љ
409

2039
Њ
40A
Қ
49A
Һ
4BA
Џ
40F
 
9.
 
ђ
452

2018

2019

201C

201D

2022

2013

2014

2122
љ
459

203A
њ
45A
қ
49B
һ
4BB
џ
45F
 
A.
 
 
A0
Ұ
4B0
ұ
4B1
Ә
4D8
¤
A4
Ө
4E8
¦
A6
§
A7
Ё
401
©
A9
Ғ
492
«
AB
¬
AC
­
AD
®
AE
Ү
4AE
 
B.
 
°
B0
±
B1
І
406
і
456
ө
4E9
µ
B5

B6
·
B7
ё
451

2116
ғ
493
»
BB
ә
4D9
Ң
4A2
ң
4A3
ү
4AF

Кодировка Windows-1251 (чувашский вариант)[править | править код]

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
 
8.
 
Ђ
402
Ѓ
403

201A
ѓ
453

201E

2026

2020

2021

20AC

2030
Љ
409

2039
Ӑ
4D0
Ӗ
4D6
Ҫ
4AA
Ӳ
4F2
 
9.
 
ђ
452

2018

2019

201C

201D

2022

2013

2014

2122
љ
459

203A
ӑ
4D1
ӗ
4D7
ҫ
4AB
ӳ
4F3

Татарский вариант[править | править код]

Эта кодировка была официально принята в Татарстане в 1996 г.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
 
8.
 
Ә
4D8
Ѓ
403

201A
ѓ
453

201E

2026

2020

2021

20AC

2030
Ө
4E8

2039
Ү
4AE
Җ
496
Ң
4A2
Һ
4BA
 
9.
 
ә
4D9

2018

2019

201C

201D

2022

2013

2014

2122
ө
4E9

203A
ү
4AF
җ
497
ң
4A3
һ
4BB
  1. Historical trends in the usage of character encodings, April 2019. Дата обращения: 11 февраля 2016. Архивировано 3 марта 2021 года.
  • История создании кодировки в сообщении Игоря Семенюка в эхоконференции SU.LAN от 14 января 1996

Содержание

  • 1 Представление символов в вычислительных машинах
  • 2 Таблицы кодировок
  • 3 Кодировки стандарта ASCII
    • 3.1 Структурные свойства таблицы
  • 4 Кодировки стандарта UNICODE
    • 4.1 Кодовое пространство
    • 4.2 Модифицирующие символы
    • 4.3 Способы представления
    • 4.4 UTF-8
      • 4.4.1 Принцип кодирования
        • 4.4.1.1 Правила записи кода одного символа в UTF-8
        • 4.4.1.2 Определение длины кода в UTF-8
    • 4.5 UTF-16
      • 4.5.1 UTF-16LE и UTF-16BE
    • 4.6 UTF-32
    • 4.7 Порядок байт
      • 4.7.1 Варианты записи
        • 4.7.1.1 Порядок от старшего к младшему
        • 4.7.1.2 Порядок от младшего к старшему
        • 4.7.1.3 Переключаемый порядок
        • 4.7.1.4 Смешанный порядок
        • 4.7.1.5 Различия
      • 4.7.2 Маркер последовательности байт
    • 4.8 Проблемы Юникода
  • 5 Примеры
    • 5.1 Код на python
    • 5.2 hex-дамп файла exampleBOM
  • 6 См. также
  • 7 Источники информации

Представление символов в вычислительных машинах

В вычислительных машинах символы не могут храниться иначе, как в виде последовательностей бит (как и числа). Для передачи символа и его корректного отображения ему должна соответствовать уникальная последовательность нулей и единиц. Для этого были разработаны таблицы кодировок.

Количество символов, которые можно задать последовательностью бит длины , задается простой формулой . Таким образом, от нужного количества символов напрямую зависит количество используемой памяти.

Таблицы кодировок

На заре компьютерной эры на каждый символ было отведено по пять бит. Это было связано с малым количеством оперативной памяти на компьютерах тех лет. В эти символа входили только управляющие символы и строчные буквы английского алфавита.

С ростом производительности компьютеров стали появляться таблицы кодировок с большим количеством символов.
Первой семибитной кодировкой стала ASCII7. В нее уже вошли прописные буквы английского алфавита, арабские цифры, знаки препинания.
Затем на ее базе была разработана ASCII8, в которым уже стало возможным хранение символов: основных и еще столько же расширенных. Первая часть таблицы осталась без изменений, а вторая может иметь различные варианты (каждый имеет свой номер). Эта часть таблицы стала заполняться символами национальных алфавитов.

Но для многих языков (например, арабского, японского, китайского) символов недостаточно, поэтому развитие кодировок продолжалось, что привело к появлению UNICODE.

Кодировки стандарта ASCII

Определение:
ASCII — таблицы кодировок, в которых содержатся основные символы (английский алфавит, цифры, знаки препинания, символы национальных алфавитов(свои для каждого региона), служебные символы) и длина кода каждого символа бит.

бит:

  • ASCII7 — первая кодировка, пригодная для работы с текстом. Помимо маленьких букв английского алфавита и служебных символов, содержит большие буквы английского языка, цифры, знаки препинания и другие символы.

Кодировки стандарта ASCII ( бит):

  • ASCII — первая кодировка, в которой стало возможно использовать символы национальных алфавитов.
  • КОИ8-R — первая русская кодировка. Символы кириллицы расположены не в алфавитном порядке. Их разместили в верхнюю половину таблицы так, чтобы позиции кириллических символов соответствовали их фонетическим аналогам в английском алфавите. Это значит, что даже при потере старшего бита каждого символа, например, при проходе через устаревший семибитный модем, текст остается «читаемым».
  • CP866 — русская кодировка, использовавшаяся на компьютерах IBM в системе DOS.
  • Windows-1251 — русская кодировка, использовавшаяся в русскоязычных версиях операционной системы Windows в начале 90-х годов. Кириллические символы идут в алфавитном порядке. Содержит все символы, встречающиеся в типографике обычного текста (кроме знака ударения).

Структурные свойства таблицы

  • Цифры 0-9 представляются своими двоичными значениями (например, ), перед которыми стоит . Таким образом, двоично-десятичные числа (BCD) превращаются в ASCII-строку с помощью простого добавления слева к каждому двоично-десятичному полубайту.
  • Буквы A-Z верхнего и нижнего регистров различаются в своём представлении только одним битом, что упрощает преобразование регистра и проверку на диапазон. Буквы представляются своими порядковыми номерами в алфавите, записанными в двоичной системе счисления, перед которыми стоит (для букв верхнего регистра) или (для букв нижнего регистра).
  0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2    ! » # $  % & ( ) * + , . /
3 0 1 2 3 4 5 6 7 8 9  :  ; < = >  ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [ \ ] ^ _
6 ` a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

Кодировки стандарта UNICODE

Юникод или Уникод (англ. Unicode) — это промышленный стандарт обеспечивающий цифровое представление символов всех письменностей мира, и специальных символов.

Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium, Unicode Inc.). Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей.
Стандарт состоит из двух основных разделов: универсальный набор символов (англ. UCS, universal character set) и семейство кодировок (англ. UTF, Unicode transformation format). Универсальный набор символов задаёт однозначное соответствие символов кодам — элементам кодового пространства, представляющим неотрицательные целые числа.Семейство кодировок определяет машинное представление последовательности кодов UCS.

Коды в стандарте Unicode разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII с соответствующими кодами. Далее расположены области знаков различных письменностей, знаки пунктуации и технические символы. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F. Часть кодов зарезервирована для использования в будущем.

Кодовое пространство

Хотя формы записи UTF-8 и UTF-32 позволяют кодировать до кодовых позиций, было принято решение использовать лишь для совместимости с UTF-16. Впрочем, даже и этого на текущий момент более чем достаточно — в версии 6.0 используется чуть менее кодовых позиций ( графических и прочих символов).

Кодовое пространство разбито на плоскостей (англ. planes) по символов. Нулевая плоскость называется базовой, в ней расположены символы наиболее употребительных письменностей. Первая плоскость используется, в основном, для исторических письменностей, вторая — для для редко используемых иероглифов китайского письма, третья зарезервирована для архаичных китайских иероглифов. Плоскости и выделены для частного употребления.

Для обозначения символов Unicode используется запись вида «U+xxxx» (для кодов ) или «U+xxxxx» (для кодов ) или «U+xxxxxx» (для кодов ), где xxx — шестнадцатеричные цифры. Например, символ «я» (U+044F) имеет код .

Плоскости Юникода
Плоскость Название Диапазон символов
Plane 0 Basic multilingual plane (BMP) U+0000…U+​FFFF
Plane 1 Supplementary multilingual plane (SMP) U+10000…U+​1FFFF
Plane 2 Supplementary ideographic plane (SIP) U+20000…U+​2FFFF
Planes 3-13 Unassigned U+30000…U+​DFFFF
Plane 14 Supplement­ary special-purpose plane (SSP) U+E0000…U+​EFFFF
Planes 15-16 Supplement­ary private use area (S PUA A/B) U+F0000…U+​10FFFF

Модифицирующие символы

Графические символы в Юникоде делятся на протяжённые и непротяжённые. Непротяжённые символы при отображении не занимают дополнительного места в строке. К примеру, к ним относятся знак ударения. Протяжённые и непротяжённые символы имеют собственные коды, но последние не могут встречаться самостоятельно. Протяжённые символы называются базовыми (англ. base characters), а непротяженные — модифицирующими (англ. combining characters). Например символ «Й» (U+0419) может быть представлен в виде базового символа «И» (U+0418) и модифицирующего символа « ̆» (U+0306).

Способы представления

Юникод имеет несколько форм представления (англ. Unicode Transformation Format, UTF): UTF-8, UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE). Была разработана также форма представления UTF-7 для передачи по семибитным каналам, но из-за несовместимости с ASCII она не получила распространения и не включена в стандарт.

UTF-8

UTF-8 — представление Юникода, обеспечивающее наилучшую совместимость со старыми системами, использовавшими -битные символы. Текст, состоящий только из символов с номером меньше , при записи в UTF-8 превращается в обычный текст ASCII. И наоборот, в тексте UTF-8 любой байт со значением меньше изображает символ ASCII с тем же кодом. Остальные символы Юникода изображаются последовательностями длиной от двух до шести байт (на деле, только до четырех байт, поскольку в Юникоде нет символов с кодом больше , и вводить их в будущем не планируется), в которых первый байт всегда имеет вид , а остальные — .

Символы UTF-8 получаются из Unicode cледующим образом:

Unicode UTF-8 Представленные символы
0x00000000 — 0x0000007F 0xxxxxxx ASCII, в том числе английский алфавит, простейшие знаки препинания и арабские цифры
0x00000080 — 0x000007FF 110xxxxx 10xxxxxx кириллица, расширенная латиница, арабский алфавит, армянский алфавит, греческий алфавит, еврейский алфавит и коптский алфавит; сирийское письмо, тана, нко; Международный фонетический алфавит; некоторые знаки препинания
0x00000800 — 0x0000FFFF 1110xxxx 10xxxxxx 10xxxxxx все другие современные формы письменности, в том числе грузинский алфавит, индийское, китайское, корейское и японское письмо; сложные знаки препинания; математические и другие специальные символы
0x00010000 — 0x001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx музыкальные символы, редкие китайские иероглифы, вымершие формы письменности
111111xx служебные символы c, d, e, f

Несмотря на то, что UTF-8 позволяет указать один и тот же символ несколькими способами, только наиболее короткий из них правильный. Остальные формы, называемые overlong sequence, отвергаются по соображениям безопасности.

Принцип кодирования

Правила записи кода одного символа в UTF-8

1. Если размер символа в кодировке UTF-8 = байт

Код имеет вид (0aaa aaaa), где «0» — просто ноль, остальные биты «a» — это код символа в кодировке ASCII;

2. Если размер символа в кодировке в UTF-8 байт (то есть от до ):

2.1 Первый байт содержит количество байт символа, закодированное в единичной системе счисления;
2 — 11
3 — 111
4 — 1111
5 — 1111 1
6 — 1111 11
2.2 «0» — бит терминатор, означающий завершение кода размера
2.3 далее идут значащие байты кода, которые имеют вид (10xx xxxx), где «10» — биты признака продолжения, а «x» — значащие биты.

В общем случае варианты представления одного символа в кодировке UTF-8 выглядят так:

(1 байт)  0aaa aaaa 
(2 байта) 110x xxxx 10xx xxxx
(3 байта) 1110 xxxx 10xx xxxx 10xx xxxx
(4 байта) 1111 0xxx 10xx xxxx 10xx xxxx 10xx xxxx
(5 байт)  1111 10xx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx
(6 байт)  1111 110x 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx
Определение длины кода в UTF-8
Количество байт UTF-8 Количество значащих бит

В общем случае количество значащих бит , кодируемых байтами UTF-8, определяется по формуле:

при

при

UTF-16

UTF-16 — один из способов кодирования символов (англ. code point) из Unicode в виде последовательности -битных слов (англ. code unit). Данная кодировка позволяет записывать символы Юникода в диапазонах U+0000..U+D7FF и U+E000..U+10FFFF (общим количеством ), причем -байтные символы представляются как есть, а более длинные — с помощью суррогатных пар (англ. surrogate pair), для которых и вырезан диапазон .

В UTF-16 символы кодируются двухбайтовыми словами с использованием всех возможных диапазонов значений (от до ). При этом можно кодировать символы Unicode в диапазонах и . Исключенный отсюда диапазон используется как раз для кодирования так называемых суррогатных пар — символов, которые кодируются двумя -битными словами. Символы Unicode до включительно (исключая диапазон для суррогатов) записываются как есть -битным словом. Символы же в диапазоне (больше бит) уже кодируются парой -битных слов. Для этого их код арифметически сдвигается до нуля (из него вычитается минимальное число ). В результате получится значение от нуля до , которое занимает до бит. Старшие бит этого значения идут в лидирующее (первое) слово, а младшие бит — в последующее (второе). При этом в обоих словах старшие бит используются для обозначения суррогата. Биты с по имеют значения , а -й бит содержит у лидирующего слова и — у последующего. В связи с этим можно легко определить к чему относится каждое слово.

UTF-16LE и UTF-16BE

Один символ кодировки UTF-16 представлен последовательностью двух байт или двух пар байт. Который из двух байт в словах идёт впереди, старший или младший, зависит от порядка байт. Подробнее об этом будет сказано ниже.

UTF-32

UTF-32 — один из способов кодирования символов из Юникод, использующий для кодирования любого символа ровно бита. Остальные кодировки, UTF-8 и UTF-16, используют для представления символов переменное число байт. Символ UTF-32 является прямым представлением его кодовой позиции (англ. code point).

Главное преимущество UTF-32 перед кодировками переменной длины заключается в том, что символы Юникод непосредственно индексируемы. Получение -ой кодовой позиции является операцией, занимающей одинаковое время. Напротив, коды с переменной длиной требует последовательного доступа к -ой кодовой позиции. Это делает замену символов в строках UTF-32 простой, для этого используется целое число в качестве индекса, как обычно делается для строк ASCII.

Главный недостаток UTF-32 — это неэффективное использование пространства, так как для хранения символа используется четыре байта. Символы, лежащие за пределами нулевой (базовой) плоскости кодового пространства редко используются в большинстве текстов. Поэтому удвоение, в сравнении с UTF-16, занимаемого строками в UTF-32 пространства не оправдано.

Хотя использование неменяющегося числа байт на символ удобно, но не настолько, как кажется. Операция усечения строк реализуется легче в сравнении с UTF-8 и UTF-16. Но это не делает более быстрым нахождение конкретного смещения в строке, так как смещение может вычисляться и для кодировок фиксированного размера. Это не облегчает вычисление отображаемой ширины строки, за исключением ограниченного числа случаев, так как даже символ «фиксированной ширины» может быть получен комбинированием обычного символа с модифицирующим, который не имеет ширины. Например, буква «й» может быть получена из буквы «и» и диакритического знака «крючок над буквой». Сочетание таких знаков означает, что текстовые редакторы не могут рассматривать -битный код как единицу редактирования. Редакторы, которые ограничиваются работой с языками с письмом слева направо и составными символами (англ. Precomposed character), могут использовать символы фиксированного размера. Но такие редакторы вряд ли поддержат символы, лежащие за пределами нулевой (базовой) плоскости кодового пространства и вряд ли смогут работать одинаково хорошо с символами UTF-16.

Порядок байт

В современной вычислительной технике и цифровых системах связи информация обычно представлена в виде последовательности байт. В том случае, если число не может быть представлено одним байтом, имеет значение в каком порядке байты записываются в памяти компьютера или передаются по линиям связи. Часто выбор порядка записи байт произволен и определяется только соглашениями.

В общем случае, для представления числа , большего (здесь — максимальное целое число, записываемое одним байтом), приходится использовать несколько байт. При этом число записывается в позиционной системе счисления по основанию :

Набор целых чисел , каждое из которых лежит в интервале от до , является последовательностью байт, составляющих . При этом называется младшим байтом, а — старшим байтом числа .

Варианты записи

Порядок от старшего к младшему

Порядок от старшего к младшему (англ. big-endian): , запись начинается со старшего и заканчивается младшим. Этот порядок является стандартным для протоколов TCP/IP, он используется в заголовках пакетов данных и во многих протоколах более высокого уровня, разработанных для использования поверх TCP/IP. Поэтому, порядок байт от старшего к младшему часто называют сетевым порядком байт (англ. network byte order). Этот порядок байт используется процессорами IBM 360/370/390, Motorola 68000, SPARC (отсюда третье название — порядок байт Motorola, Motorola byte order).

В этом же виде (используя представление в десятичной системе счисления) записываются числа индийско-арабскими цифрами в письменностях с порядком знаков слева направо (латиница, кириллица). Для письменностей с обратным порядком (арабская) та же запись числа воспринимается как «от младшего к старшему».

Порядок байт от старшего к младшему применяется во многих форматах файлов — например, PNG, FLV, EBML.

Порядок от младшего к старшему

Порядок от младшего к старшему (англ. little-endian): , запись начинается с младшего и заканчивается старшим. Этот порядок записи принят в памяти персональных компьютеров с x86-процессорами, в связи с чем иногда его называют интеловский порядок байт (по названию фирмы-создателя архитектуры x86).

В противоположность порядку big-endian, соглашение little-endian поддерживают меньше кросс-платформенных протоколов и форматов данных; существенные исключения: USB, конфигурация PCI, таблица разделов GUID, рекомендации FidoNet.

Переключаемый порядок

Многие процессоры могут работать и в порядке от младшего к старшему, и в обратном, например, ARM, PowerPC (но не PowerPC 970), DEC Alpha, MIPS, PA-RISC и IA-64. Обычно порядок байт выбирается программно во время инициализации операционной системы, но может быть выбран и аппаратно перемычками на материнской плате. В этом случае правильнее говорить о порядке байт операционной системы. Переключаемый порядок байт иногда называют англ. bi-endian.

Смешанный порядок

Смешанный порядок байт (англ. middle-endian) иногда используется при работе с числами, длина которых превышает машинное слово. Число представляется последовательностью машинных слов, которые записываются в формате, естественном для данной архитектуры, но сами слова следуют в обратном порядке.

Классический пример middle-endian — представление -байтных целых чисел на -битных процессорах семейства PDP-11 (известен как PDP-endian). Для представления двухбайтных значений (слов) использовался порядок little-endian, но -хбайтное двойное слово записывалось от старшего слова к младшему.

В процессорах VAX и ARM используется смешанное представление для длинных вещественных чисел.

Различия

Существенным достоинством little-endian по сравнению с big-endian порядком записи считается возможность «неявной типизации» целых чисел при чтении меньшего объёма байт (при условии, что читаемое число помещается в диапазон). Так, если в ячейке памяти содержится число , то прочитав его как int16 (два байта) мы получим число , прочитав один байт — число . Однако, это же может считаться и недостатком, потому что провоцирует ошибки потери данных.

Обратно, считается что у little-endian, по сравнению с big-endian есть «неочевидность» значения байт памяти при отладке (последовательность байт (A1, B2, C3, D4) на самом деле значит , для big-endian эта последовательность (A1, B2, C3, D4) читалась бы «естественным» для арабской записи чисел образом: ). Наименее удобным в работе считается middle-endian формат записи; он сохранился только на старых платформах.

Для записи длинных чисел (чисел, длина которых существенно превышает разрядность машины) обычно предпочтительнее порядок слов в числе little-endian (поскольку арифметические операции над длинными числами производятся от младших разрядов к старшим). Порядок байт в слове — обычный для данной архитектуры.

Маркер последовательности байт

Для определения формата представления Юникода в начало текстового файла записывается сигнатура — символ U+FEFF (неразрывный пробел с нулевой шириной), также именуемый маркером последовательности байт (англ. byte order mark (BOM)). Это позволяет различать UTF-16LE и UTF-16BE, поскольку символа U+FFFE не существует.

Bom.png

Представление BOM в кодировках

Кодирование Представление (Шестнадцатеричное)
UTF-8 EF BB BF
UTF-16 (BE) FE FF
UTF-16 (LE) FF FE
UTF-32 (BE) 00 00 FE FF
UTF-32 (LE) FF FE 00 00

В кодировке UTF-8, наличие BOM не является существенным, поскольку, нет альтернативной последовательности байт. Когда BOM используется на страницах или редакторах для контента закодированного в UTF-8, иногда он может представить пробелы или короткие последовательности символов, имеющие странный вид (такие как ). Именно поэтому, при наличии выбора, для совместимости, как правило, лучше упустить BOM в UTF-8 контенте.Однако BOM могут еще встречаться в тексте закодированном в UTF-8, как побочный продукт перекодирования или потому, что он был добавлен редактором. В этом случае BOM часто называют подписью UTF-8.

Когда символ закодирован в UTF-16, его или байта можно упорядочить двумя разными способами (little-endian или big-endian). Изображение справа показывает это. Byte order mark указывает, какой порядок используется, так что приложения могут немедленно расшифровать контент. UTF-16 контент должен всегда начинатся с BOM.

BOM также используется для текста обозначенного как UTF-32. Аналогично UTF-16 существует два варианта четырёхбайтной кодировки — UTF-32BE и UTF-32LE. К сожалению, этот способ не позволяет надёжно различать UTF-16LE и UTF-32LE, поскольку символ U+0000 допускается Юникодом

Проблемы Юникода

В Юникоде английское «a» и польское «a» — один и тот же символ. Точно так же одним символом (но отличающимся от «a» латинского) считаются русское «а» и сербское «а». Такой принцип кодирования не универсален; по-видимому, решения «на все случаи жизни» вообще не может существовать.

Примеры

Если записать строку ‘hello мир’ в файл exampleBOM, а затем сделать его hex-дамп, то можно убедиться в том, что разные символы кодируются разным количеством байт. Например, английские буквы,пробел, знаки препинания и пр. кодируются одним байтом, а русские буквы — двумя

Код на python

#!/usr/bin/env python
#coding:utf-8
import codecs
f = open('exampleBOM','w')
b = u'hello мир'
f.write(codecs.BOM_UTF8)
f.write(b.encode('utf-8'))
f.close()

hex-дамп файла exampleBOM

Символ BOM h e l l o Пробел м и р
Код в UNICODE EF BB BF 68 65 6C 6C 6F 20 D0 BC D0 B8 D1 80
Код в UTF-8 11101111 10111011 10111111 01101000 01100101 01101100 01101100 01101111 00100000 11010000 10111100 11010000 10111000 11010001 10000000

См. также

  • Представление целых чисел: прямой код, код со сдвигом, дополнительный код
  • Представление вещественных чисел

Источники информации

  • Wikipedia — таблица ASCII
  • Wikipedia — стандарт UNICODE
  • Wikipedia — Byte order mark
  • Wikipedia — Порядок байтов
  • Wikipedia — Юникод
  • Wikipedia — Windows-1251
  • Wikipedia — UTF-8
  • Wikipedia — UTF-16
  • Wikipedia — UTF-32

Кодировка (или кодирование) – это процедура преобразования данных и сигналов из формы представления, удобной для восприятия человеком, в форму, которую распознает электронное устройство. Прием, позволяющий подготовить информацию для обработки, передачи, а также дальнейшего хранения.

Получаемые данные будут обрабатываться в виде логических единиц и нулей – в двоичной системе. Если числовые символы можно перевести в такую форму представления без проблем, то с кириллицей и другими буквами ситуация обстоит иначе. Буквы не поддерживают перевод в двоичный код. Вместо этого записи сначала преобразовываются в числа по специальной таблице символов. Далее компьютер считывает полученные данные и выдает результат.

В истории сложилось так, что были созданы несколько таблиц символов. Связано это с большим количеством национальных алфавитов, а также разными позициями относительно их написания.

Статья расскажет о существующих кодировках, а также поможет понять, как выразить символы кириллицы в UTF-8 и UTF-16.

Виды кодировок

Кодировать символы можно разными способами. Ситуация напрямую зависит от того, какая кодировка используется в системе. Существуют различные ее виды. Основные:

  • ASCII;
  • CP866;
  • KOI8-R;
  • Windows 251;
  • Unicode.

Чаще всего встречаются первая и последняя кодировки. Не все они распознают буквы русского алфавита. Далее каждый вариант будет рассмотрен более подробно. А еще предстоит выяснить, что делать, если при попытке закодировать кириллицу на экране появляются непонятные записи.

ASCII – базовая кодировка

ASCII – American Standard Code for Information Interchange. В русском языке произносится как «Аски». Базовая кодировка для работы устройств. Первые 128 ее символов являются наиболее используемыми. Они включают в себя:

  • латинские буквы;
  • цифры (арабские);
  • служебные компоненты;
  • знаки препинания.

Для кодировки используется один байт. Это привело к тому, что у ASCII появились расширенные версии. Изначально данные таблицы не предоставляли возможность работы с кириллицей и русскими символами. Вместо них на экране появлялись непонятные записи – «кракозябры».

Кодировка данных: кириллица

Кодировка данных: кириллица

Выше представлены стандартные таблицы ASCII. В них русского алфавита нет – он не предусмотрен действующими правилами.

Расширенные ASCII

ASCII положила начало развития актуальных современных таблиц кодирования информации. Изначально она содержала 128 составляющих, но в расширенной версии их стало 256. Это дало возможность добавления новых алфавитов для корректного распознавания информации и ее дальнейшего отображения на дисплее устройства.

Первая расширенная версия ASCII – это CP866. В ней реализована первая таблица кодировки русских букв. Верхняя часть CP866 полностью совпадает с базовым «Аски», а нижняя позволяет закодировать кириллицу и некоторые символы, которых нет на клавиатуре.

Кодировка данных: кириллица

Выше расположена кодовая таблица CP866. Она распространялась компанией IBM и использовалась преимущественно в DOS-системах.

Кириллица с момента образования CP866 стала активно использоваться к компьютерной технике. Это привело к созданию совершенно новых кодировок с русскими символами. Пример – KOI8-R.

Здесь каждый символ тоже кодируется одним байтом. Первая часть соответствует классической ASCII. Во второй располагаются специальные записи, которых нет на клавиатуре, а также русские буквы.

KOI8-R отличается тем, что буквы в русского языка в ней располагаются не в алфавитном порядке. Они располагаются по принципу созвучия с латиницей. Данный прием предпринят для того, чтобы было удобнее переходить с кириллицы на латинские буквы, отбрасывая всего один бит.

Windows 1251

Дальнейшее развитие кодировок связано с появлением графических операционных систем. Для отображения информации на экране псевдографика стала ненужной. Так возникли группы, которые выступали в качестве расширенных версий ASCII, но являлись более совершенными. Псевдографика в них отсутствовала. Они получили название ANSI.

Наглядный и весьма распространенный вариант такой кодировки – это Windows 1251. Он отличается от предшественников следующими особенностями:

  1. Вместо псевдографики здесь располагаются недостающие символы кириллицы и русской типографики. Знак ударения – единственное исключение. Его там нет.
  2. На замену псевдографики пришли элементы, приближенные к кириллице – буквы славянских языков.
  3. Первые 32 элемента отведены под операции, перевод строки и пробел.
  4. До 127 элемента расположены интернациональные компоненты, латинский алфавит, знаки препинания и математических действий, цифры.
  5. Оставшееся «пространство» выделено под национальные элементы. Именно они отображают различные мировые алфавиты. 
Кодировка данных: кириллица

Кодовая таблица, представленная выше – часть Windows 1251, отведенная под кириллицу и иные элементы. 

Unicode

Unicode – кодировка, которая пользуется наибольшим спросом в современных компьютерных устройствах. Этот стандарт включает в себя почти все знаки существующих письменных языков. Он преобладает в Интернете. Был создан в 1991 году.

Unicode является многоязычным стандартом, базирующимся на ASCII. Он включает не только кириллицу, но и азиатские иероглифы. Выступает в качестве универсальной кодировки. Включает в себя несколько стандартов.

UTF-32

Первая вариация Unicode. Для кодирования одного элемента здесь используются 32 бита или 4 байта. Данная особенность приводит к тому, что закодированный кириллический символ в UTF-32 будет иметь вес в 4 раза больше, чем в ASCII. Несмотря на соответствующий недостаток, система стала предлагать закодировать знаки в количестве 232.

Все символы в UTF-32 непосредственно индексируемы. Найти тот или иной знак по номеру его позиции в файле удается очень быстро. Это привело к быстрой обработке операций по замене символьных данных.

UTF-16

UTF-16 – новый, более совершенный стандарт Unicode. После появления стала выступать базовым пространством для всех используемых печатных элементов. Кириллическая таблица в ней тоже есть.

Кодировка данных: кириллица

Коды символов в UTF-16 содержатся в 16-ричной системе счислений. Увидеть их можно, если перейти в раздел Windows «Таблица символов». Она располагается в меню «Пуск»–«Программы»–«Стандартные»–«Служебные».

При помощи UTF-16 можно закодировать 65 536 элементов. Это число стало базовым для Unicode. Расширенное пространство включает в себя миллион дополнительных символьных записей.

При переходе с ASCII на UTF-16 размер исходного кода документа увеличивается уже не в 4, а в 2 раза. Связано это с использованием 2 байтов для кодирования одного и того же символа или шестнадцать бит.

UTF-8

Со временем был разработан стандарт UTF-8. В нем тоже есть кириллическая кодовая таблица. Носит название переменной длины. Несмотря на то, что в названии стандарта стоит 8, она действительно меняется. Каждый элемент может получить код длиной от 1 до 6 байт включительно. Практически стандартом используются компоненты до 4 байт. Латинские буквы здесь содержатся в одном байте, как и в ASCII.

В UTF-8 русские символы занимают по 2 байта, а грузинские – по 3. Текущий стандарт предусматривает возможность печати не только букв, но и смайликов. С UTF-8 хорошо работают даже системы, которые не ориентированы на Unicode. Связано это с тем, что базовая часть ASCII перешла в новый стандарт Юникода.

Блоки кириллицы

Unicode, начиная с версии 9.0, для кириллицы отвел пять различных блоков:

Как называется Диапазон кодов типа hex Версия Unicode
Cyrillic Стандартная кириллица От 0400 до 04FF 1.1
Cyrillic Supplement Дополнения От 0500 до 052F 3.2
Cyrillic Extended-A Расширенная кириллица–А От 2DE0 до 2DFF 5.1
Extended-B Кириллица расширенного типа–B От A640 до A69F
Extended-C Кириллица расширенная–C От 1C80 до 1C8F 9.0

Эти 4 раздела содержатся в кодовом пространстве Unicode 448 позиций. Из них 22 не определены.

Все символы кириллицы можно разбить на несколько групп:

  • славянские алфавиты;
  • исторические буквы и старославянский (церковный славянский) алфавит;
  • дополнительные буквы для различных языков, использующих кириллицу;
  • церковнославянские буквотипы;
  • дополнительные буквы и символы для церковнославянского языка;
  • элементы для старой орфографии Абхазии;
  • старые формы представления кириллицы.

Несмотря на относительное совершенство Unicode, при использовании кодировок кириллицы в UTF-8 и других возникают некоторые проблемы. Пример – неоднозначность относительно кодирования некоторых букв. Для того, чтобы привести текст к единому стилю и корректному отображению, приходится определять каждым конкретным стандартом форму нормализации информации.

Непонятные символы на экране – исправление

Любая страница данных может быть закодирована не только в ASCII, но и в Unicode. Главное правильно выбрать кодировку для русского текста. Если на экране вместо нормальных текстовых данных отображаются «кракозябры» (или непонятные надписи), значит возникла проблема перекодирования.

Для редактирования и создания новых текстовых документов можно использовать различные приложения, поддерживающие работу не только с Unicode. Тогда вероятность возникновения ошибок отображения информации будет сведена к минимуму. Пример – Notepad++. Он умеет подсвечивать синтаксис сотен языков программирования и разметки, что станет особо полезным при программировании проектов.

Чтобы страница, содержащая текст, была приведена от одного стандарта к другому, потребуется:

  1. Выделить текст в Notepad++.
  2. Нажать на кнопку «Кодировка» на верхней панели инструментов.
  3. Выбрать подходящий вариант. Пример – «Преобразовать в UTF-8».

Желательно выбирать вариант кодировки UTF-8 без BOM для русского языка, отображаемого на странице в документе или на сайте. Этот прием поможет сохранить данные без сигнатуры (добавления лишних трех байтов в самое начало документов).

Десятичная система

При преобразовании информации из одной системы счисления (и кодировки) в другую, могут потребоваться ее десятичные значения. Такой вариант используется в ASCII и UTF-32. При помощи него можно перевести символ в удобную для восприятия компьютером форму. А еще – выполнить дальнейшую перекодировку в те или иные системы счисления.

Десятичная система помогает в Windows вводить различные символы при помощи сочетания с Alt. Для перевода кириллицы в UTF-8 format поможет таблица ниже.

Кодировка данных: кириллица

Кодировка данных: кириллица

Кодировка данных: кириллица

В Unicode transformation символьных записей производится при помощи целых чисел без знаков. Необходимые преобразования помогут выполнить специализированные сайты-конвертеры. Самостоятельно такие операции практически не используются. Таблицы соответствия и конвертеры сильно облегчают эту задачу.

Как освоить кодирование информации

Русская кодировка может некорректно отображаться в некоторых приложениях, а также операционных системах. Связано это с тем, что не все стандарты кодирования данных имеют коды для соответствующих элементов.

Чтобы лучше разобраться в программировании, а также грамотном использовании стандартов кодирования и переводе текста из одной системы в другую, рекомендуется закончить дистанционные онлайн курсы. Они предлагают:

  • постоянное кураторство;
  • домашние задания и интересные практические задачи;
  • возможность освоить инновационные профессии и направления в мире IT в сжатые сроки;
  • помощь в формировании портфолио;
  • разнообразие направлений – есть предложения как для новичков, так и для взрослых.

По завершении курса обучения ученик получит сертификат в электронной форме, подтверждающий приобретенный спектр знаний и умений.

Хотите стать профессионалом в сфере обработки данных? Добро пожаловать на курсы в Otus:

  • Промышленный ML на больших данных
  • Data Warehouse Analyst
  • Data Engineer

Информация – это сведения об объектах окружающего нас мира.

Если эта информация выражена с помощью естественных и формальных языков в письменной или печатной форме, то такую информацию мы можем называть текстовой, т.е. выраженной с помощью знаков.

Пример.

На уроки учитель вам рассказывает какую-то тему, ученики же слушают, а затем записывают основные моменты. Пока учитель просто рассказывает, то вы воспринимаете информацию не в текстовом виде до тех пор, пока ученики ее не записали себе в тетрадь. То есть ученики звуковую информацию, которая переходила к ученикам от учителя закодировали и записали ее в форме текста.

Когда дома, ученик читает записи в своей тетради, то он эту информацию декодирует. Ученик, информацию в виде текста преобразовывает в понятную ему информацию. Это происходит потому, что люди мыслят не буквами, а образами.  Если написано «торт», то мы себе представляем этот торт. Если написано «яблоко», то мы представляем себе яблоко.

Сами буквы для человека ничего не значат, но их определенные последовательности мы в голове у себя собираем и таким образом декодируем записанную у себя информацию, преобразуем в понятный для нас вид.

Реализация процесса кодирования текстовой информации

Когда человек нажимает на кнопку клавиатуры, в процессор компьютера передается определенная последовательность импульсов. Затем процессор обрабатывает эту последовательность и передает ее в программу, в которой человек в настоящее время работает. И уже программа делает обратное преобразование. В соответствии с какими-то правилами она расшифровывает букву, которую мы ввели у себя на клавиатуре, и человек видит ее на экране, например, в текстовом процессоре майкрософт ворд.

Но здесь появляется сложность. Должно быть какое-то правило, которое при использовании разных программ и разных компьютеров, будет нам выдавать правильное значение.

Поэтому, разработчики компьютеров и программного обеспечение научились договариваться между собой.

Текстовую информацию в компьютере можно закодировать следующим образом: у нас есть какие-то символы – буквы алфавита. Мы можем каждой букве присвоить разные номера, а затем эти номера перевести в двоичный код. Вот кодировка пяти букв алфавита таким образом.

В этом случае можно вместо буквы А написать последовательность символов 001 и т.д. точно так же можно реализовать это технически: на клавиатуре вводится буква В, а процессору поступает сигнал: 011. А процессор получив сигнал будет обрабатывать поступившую информацию. В программе, соответственно, будет представлена такая же табличка, и для программы будет понятно, какой сигнал получен и как он должен быть преобразован и выведен на экран.

Такие таблицы должны быть единым международным стандартом.

В 1963 г. в Америке была создана в 1963 г. таблица под названием ASCII, что означало «Американский стандартный код таблиц соответствия».

В ней было закодировано 128 символов с номерами 0 — 127. В эту таблицу вошли различные символы (таблица на странице 139 учебника Босовой), в том числе скобки, значки, вопросительный и восклицательный знаки, символы латинского алфавита, причем как маленькие символы, так и большие символы, цифры, знаки препинания и т.д.

В эту табличку вошли все символы, которые могли понадобиться человеку для работы.

Так как компьютеры начали распространяться не только в Америке, но и в страны, где разговаривают на других языках, то понадобились в этой таблице дополнительные места, в которых можно было бы внести коды символов, например, кирилистического алфавита. Эти таблицы были расширены. И примером такой расширенной таблицы ASCII стала таблица Windows-1251.

Если мы на нее посмотрим (таблица 3.9 на странице 140 учебника Босовой), то символы до 127 берутся из таблицы ASCII.

Символы таблицы ASCII

Символы с 0 до 32 – это операции перевода строки, ввод пробела и другие символы, 33-127 – интернациональные (латинский алфавит, цифры, знаки препинания, математические операции), 128-255- национальные (символы русского алфавита или других языков).

И для кодирования всех этих символов понадобилось 256 позиций, что соответствовало 8битной кодировки.

Это мы можем определить, зная алфавитный подход к определению количества информации.

Мощность алфавита в нашем случае равна 256, 2^I = 2^8, отсюда следует, что i- информационный вес одного символа равен 8 бит или 1 байту.

Поэтому такие кодировки называют восьми битными.

Для того, чтобы закодировать один символ, нам понадобиться 8 бит, что соответствует 1 байту.

Соответственно, кодирование одного символа в соответствии с таблицей Windows-1251 занимает информационный объем, соответствующий 1 байту.

Таких восьми битных кодировок было создано несколько. Это кодировки Windows – 1251, MS-Dos, КОИ-18, ISO, Mac и другие. То есть в разных операционных системах были разные таблицы кодировок. В наше время становится это неудобным, так как количество кодов значительно увеличивается. Если мы зайдем на какой –ни будь сайт, а наш браузер неправильно определит кодировку или эту кодировку неправильно определит сервер, то мы получим информацию не в том виде, в котором мы хотим ее видеть.

Сейчас, когда появились компьютеры со значительной мощностью пользователи могут использовать таблицу Unicode или универсальную кодировку. И в ней, мы на каждый символ отводим 2 байта, т.е. с ее помощью мы можем закодировать не 256 символов как это было в таблицах Windows – 1251, MS-Dos, КОИ-18, ISO, Mac и других. Мы можем закодировать 2^16 символов: здесь у нас мощность алфавита

N = 2^16=65536

Поскольку этого места хватает для кодировки всех символов различных языков, в том числе китайских иероглифов, то эта таблица и получила название Unicode.

Информационным объемом текстового сообщения называется количество бит (байт, Кбайт и т.д.) необходимых для записи этого сообщения путем заранее оговоренного способа двоичного кодирования.

Как работают кодировки текста. Откуда появляются «кракозябры». Принципы кодирования. Обобщение и детальный разбор

Время на прочтение10 мин

Количество просмотров143K

Данная статья имеет цель собрать воедино и разобрать принципы и механизм работы кодировок текста, подробно этот механизм разобрать и объяснить. Полезна она будет тем, кто только примерно представляет, что такое кодировки текста и как они работают, чем отличаются друг от друга, почему иногда появляются не читаемые символы, какой принцип кодирования имеют разные кодировки.

Чтобы получить детальное понимание этого вопроса придется прочитать и свести воедино не одну статью и потратить довольно значительное время на это. В данном материале же это все собрано воедино и по идее должно сэкономить время и разбор на мой взгляд получился довольно подробный.

О чем будет под катом: принцип работы одно байтовых кодировок (ASCII, Windows-1251 и т.д.), предпосылки появления Unicode, что такое Unicode, Unicode-кодировки UTF-8, UTF-16, их отличия, принципиальные особенности, совместимость и несовместимость разных кодировок, принципы кодирования символов, практический разбор кодирования и декодирования.

Вопрос с кодировками сейчас конечно уже потерял актуальность, но все же знать как они работают сейчас и как работали раньше и при этом не потратить много времени на это думаю лишним не будет.

Предпосылки Unicode

Начать думаю стоит с того времени когда компьютеризация еще не была так сильно развита и только набирала обороты. Тогда разработчики и стандартизаторы еще не думали, что компьютеры и интернет наберут такую огромную популярность и распространенность. Собственно тогда то и возникла потребность в кодировке текста. В каком то же виде нужно было хранить буквы в компьютере, а он (компьютер) только единицы и нули понимает. Так была разработана одно-байтовая кодировка ASCII (скорее всего она не первая кодировка, но она наиболее распространенная и показательная, по этому ее будем считать за эталонную). Что она из себя представляет? Каждый символ в этой кодировке закодирован 8-ю битами. Несложно посчитать что исходя из этого кодировка может содержать 256 символов (восемь бит, нулей или единиц 28=256).

Первые 7 бит (128 символов 27=128) в этой кодировке были отданы под символы латинского алфавита, управляющие символы (такие как переносы строк, табуляция и т.д.) и грамматические символы. Остальные отводились под национальные языки. То есть получилось что первые 128 символов всегда одинаковые, а если хочешь закодировать свой родной язык пожалуйста, используй оставшуюся емкость. Собственно так и появился огромный зоопарк национальных кодировок. И теперь сами можете представить, вот например я находясь в России беру и создаю текстовый документ, у меня по умолчанию он создается в кодировке Windows-1251 (русская кодировка использующаяся в ОС Windows) и отсылаю его кому то, например в США. Даже то что мой собеседник знает русский язык, ему не поможет, потому что открыв мой документ на своем компьютере (в редакторе с дефолтной кодировкой той же самой ASCII) он увидит не русские буквы, а кракозябры. Если быть точнее, то те места в документе которые я напишу на английском отобразятся без проблем, потому что первые 128 символов кодировок Windows-1251 и ASCII одинаковые, но вот там где я написал русский текст, если он в своем редакторе не укажет правильную кодировку будут в виде кракозябр.

Думаю проблема с национальными кодировками понятна. Собственно этих национальных кодировок стало очень много, а интернет стал очень широким, и в нем каждый хотел писать на своем языке и не хотел чтобы его язык выглядел как кракозябры. Было два выхода, указывать для каждой страницы кодировки, либо создать одну общую для всех символов в мире таблицу символов. Победил второй вариант, так создали Unicode таблицу символов.

Небольшой практикум ASCII

Возможно покажется элементарщиной, но раз уж решил объяснять все и подробно, то это надо.

Вот таблица символов ASCII:

Тут имеем 3 колонки:

  • номер символа в десятичном формате
  • номер символа в шестнадцатиричном формате
  • представление самого символа.

Итак, закодируем строку «ok» (англ.) в кодировке ASCII. Символ «o» (англ.) имеет позицию 111 в десятичном виде и 6F в шестнадцатиричном. Переведем это в двоичную систему — 01101111. Символ «k» (англ.) — позиция 107 в десятеричной и 6B в шестнадцатиричной, переводим в двоичную — 01101011. Итого строка «ok» закодированная в ASCII будет выглядеть так — 01101111 01101011. Процесс декодирования будет обратный. Берем по 8 бит, переводим их в 10-ичную кодировку, получаем номер символа, смотрим по таблице что это за символ.

Unicode

С предпосылками создания общей таблицы для всех в мире символов, разобрались. Теперь собственно, к самой таблице. Unicode — именно эта таблица и есть (это не кодировка, а именно таблица символов). Она состоит из 1 114 112 позиций. Большинство этих позиций пока не заполнены символами, так что вряд ли понадобится это пространство расширять.

Разделено это общее пространство на 17 блоков, по 65 536 символов в каждом. Каждый блок содержит свою группу символов. Нулевой блок — базовый, там собраны наиболее употребляемые символы всех современных алфавитов. Во втором блоке находятся символы вымерших языков. Есть два блока отведенные под частное использование. Большинство блоков пока не заполнены.

Итого емкость символов юникода составляет от 0 до 10FFFF (в шестнадцатиричном виде).

Записываются символы в шестнадцатиричном виде с приставкой «U+». Например первый базовый блок включает в себя символы от U+0000 до U+FFFF (от 0 до 65 535), а последний семнадцатый блок от U+100000 до U+10FFFF (от 1 048 576 до 1 114 111).

Отлично теперь вместо зоопарка национальных кодировок, у нас есть всеобъемлющая таблица, в которой зашифрованы все символы которые нам могут пригодиться. Но тут тоже есть свои недостатки. Если раньше каждый символ был закодирован одним байтом, то теперь он может быть закодирован разным количеством байтов. Например для кодирования всех символов английского алфавита по прежнему достаточно одного байта например тот же символ «o» (англ.) имеет в юникоде номер U+006F, то есть тот же самый номер как и в ASCII — 6F в шестнадцатиричной и 111 в десятеричной. А вот для кодирования символа «U+103D5» (это древнеперсидская цифра сто) — 103D5 в шестнадцатиричной и 66 517 в десятеричной, тут нам потребуется уже три байта.

Решить эту проблему уже должны юникод-кодировки, такие как UTF-8 и UTF-16. Далее речь пойдет про них.

UTF-8

UTF-8 является юникод-кодировкой переменной длинны, с помощью которой можно представить любой символ юникода.

Давайте поподробнее про переменную длину, что это значит? Первым делом надо сказать, что структурной (атомарной) единицей этой кодировки является байт. То что кодировка переменной длинны, значит, что один символ может быть закодирован разным количеством структурных единиц кодировки, то есть разным количеством байтов. Так например латиница кодируется одним байтом, а кириллица двумя байтами.

Немного отступлю от темы, надо написать про совместимость ASCII и UTF

То что латинские символы и основные управляющие конструкции, такие как переносы строк, табуляции и т.д. закодированы одним байтом делает utf-кодировки совместимыми с кодировками ASCII. То есть фактически латиница и управляющие конструкции находятся на тех же самых местах как в ASCII, так и в UTF, и то что закодированы они и там и там одним байтом и обеспечивает эту совместимость.

Давайте возьмем символ «o»(англ.) из примера про ASCII выше. Помним что в таблице ASCII символов он находится на 111 позиции, в битовом виде это будет 01101111. В таблице юникода этот символ — U+006F что в битовом виде тоже будет 01101111. И теперь так, как UTF — это кодировка переменной длины, то в ней этот символ будет закодирован одним байтом. То есть представление данного символа в обеих кодировках будет одинаково. И так для всего диапазона символов от 0 до 128. То есть если ваш документ состоит из английского текста то вы не заметите разницы если откроете его и в кодировке UTF-8 и UTF-16 и ASCII (прим. в UTF-16 такие символы все равно будут закодированы двумя байтами, по этому вы не увидите разницы, если ваш редактор будет игнорировать нулевые байты), и так до момента пока вы не начнете работать с национальным алфавитом.

Сравним на практике как будет выглядеть фраза «Hello мир» в трех разных кодировках: Windows-1251 (русская кодировка), ISO-8859-1 (кодировка западно-европейских языков), UTF-8 (юникод-кодировка). Суть данного примера состоит в том что фраза написана на двух языках. Посмотрим как она будет выглядеть в разных кодировках.

В кодировке ISO-8859-1 нет таких символов «м», «и» и «р».

Теперь давайте поработаем с кодировками и разберемся как преобразовать строку из одной кодировки в другую и что будет если преобразование неправильное, или его нельзя осуществить из за разницы в кодировках.

Будем считать что изначально фраза была записана в кодировке Windows-1251. Исходя из таблицы выше запишем эту фразу в двоичном виде, в кодировке Windows-1251. Для этого нам потребуется всего только перевести из десятеричной или шестнадцатиричной системы (из таблицы выше) символы в двоичную.

01001000 01100101 01101100 01101100 01101111 00100000 11101100 11101000 11110000
Отлично, вот это и есть фраза «Hello мир» в кодировке Windows-1251.

Теперь представим что вы имеете файл с текстом, но не знаете в какой кодировке этот текст. Вы предполагаете что он в кодировке ISO-8859-1 и открываете его в своем редакторе в этой кодировке. Как сказано выше с частью символов все в порядке, они есть в этой кодировке, и даже находятся на тех же местах, но вот с символами из слова «мир» все сложнее. Этих символов в этой кодировке нет, а на их местах в кодировке ISO-8859-1 находятся совершенно другие символы. А конкретно «м» — позиция 236, «и» — 232. «р» — 240. И на этих позициях в кодировке ISO-8859-1 находятся следующие символы позиция 236 — символ «ì», 232 — «è», 240 — «ð»

Значит фраза «Hello мир» закодированная в Windows-1251 и открытая в кодировке ISO-8859-1 будет выглядеть так: «Hello ìèð». Вот и получается что эти две кодировки совместимы лишь частично, и корректно перекодировать строку из одной кодировке в другую не получится, потому что там просто напросто нет таких символов.

Тут и будут необходимы юникод-кодировки, а конкретно в данном случае рассмотрим UTF-8. То что символы в ней могут быть закодированы разным количеством байтов от 1 до 4 мы уже выяснили. Теперь стоит сказать что с помощью UTF могут быть закодированы не только 256 символов, как в двух предыдущих, а вобще все символы юникода

Работает она следующим образом. Первый бит каждого байта кодирующего символ отвечает не за сам символ, а за определение байта. То есть например если ведущий (первый) бит нулевой, то это значит что для кодирования символа используется всего один байт. Что и обеспечивает совместимость с ASCII. Если внимательно посмотрите на таблицу символов ASCII то увидите что первые 128 символов (английский алфавит, управляющие символы и знаки препинания) если их привести к двоичному виду, все начинаются с нулевого бита (будьте внимательны, если будете переводить символы в двоичную систему с помощью например онлайн конвертера, то первый нулевой ведущий бит может быть отброшен, что может сбить с толку).

01001000 — первый бит ноль, значит 1 байт кодирует 1 символ -> «H»

01100101 — первый бит ноль, значит 1 байт кодирует 1 символ -> «e»

Если первый бит не нулевой то символ кодируется несколькими байтами.

Для двухбайтовых символов первые три бита должны быть такие — 110

11010000 10111100 — в начале 110, значит 2 байта кодируют 1 символ. Второй байт в таком случае всегда начинается с 10. Итого отбрасываем управляющие биты (начальные, которые выделены красным и зеленым) и берем все оставшиеся (10000111100), переводим их в шестнадцатиричный вид (043С) -> U+043C в юникоде равно символ «м».

для трех-байтовых символов в первом байте ведущие биты — 1110

11101000 10000111 101010101 — суммируем все кроме управляющих битов и получаем что в 16-ричной равно 103В5, U+103D5 — древнеперситдская цифра сто (10000001111010101)

для четырех-байтовых символов в первом байте ведущие биты — 11110

11110100 10001111 10111111 10111111 — U+10FFFF это последний допустимый символ в таблице юникода (100001111111111111111)

Теперь, при желании, можем записать нашу фразу в кодировке UTF-8.

UTF-16

UTF-16 также является кодировкой переменной длинны. Главное ее отличие от UTF-8 состоит в том что структурной единицей в ней является не один а два байта. То есть в кодировке UTF-16 любой символ юникода может быть закодирован либо двумя, либо четырьмя байтами. Давайте для понятности в дальнейшем пару таких байтов я буду называть кодовой парой. Исходя из этого любой символ юникода в кодировке UTF-16 может быть закодирован либо одной кодовой парой, либо двумя.

Начнем с символов которые кодируются одной кодовой парой. Легко посчитать что таких символов может быть 65 535 (2в16), что полностью совпадает с базовым блоком юникода. Все символы находящиеся в этом блоке юникода в кодировке UTF-16 будут закодированы одной кодовой парой (двумя байтами), тут все просто.

символ «o» (латиница) — 00000000 01101111
символ «M» (кириллица) — 00000100 00011100

Теперь рассмотрим символы за пределами базового юникод диапазона. Для их кодирования потребуется уже две кодовые пары (4 байта). И механизм их кодирования немного сложнее, давайте по порядку.

Для начала введем понятия суррогатной пары. Суррогатная пара — это две кодовые пары используемые для кодирования одного символа (итого 4 байта). Для таких суррогатных пар в таблице юникода отведен специальный диапазон от D800 до DFFF. Это значит, что при преобразовании кодовой пары из байтового вида в шестнадцатиричный вы получаете число из этого диапазона, то перед вами не самостоятельный символ, а суррогатная пара.

Чтобы закодировать символ из диапазона 1000010FFFF (то есть символ для которого нужно использовать более одной кодовой пары) нужно:

  1. из кода символа вычесть 10000(шестнадцатиричное) (это наименьшее число из диапазона 1000010FFFF)
  2. в результате первого пункта будет получено число не больше FFFFF, занимающее до 20 бит
  3. ведущие 10 бит из полученного числа суммируются с D800 (начало диапазона суррогатных пар в юникоде)
  4. следующие 10 бит суммируются с DC00 (тоже число из диапазона суррогатных пар)
  5. после этого получатся 2 суррогатные пары по 16 бит, первые 6 бит в каждой такой паре отвечают за определение того что это суррогат,
  6. десятый бит в каждом суррогате отвечает за его порядок если это 1 то это первый суррогат, если 0, то второй

Разберем это на практике, думаю станет понятнее.

Для примера зашифруем символ, а потом расшифруем. Возьмем древнеперсидскую цифру сто (U+103D5):

  1. 103D510000 = 3D5
  2. 3D5 = 0000000000 1111010101 (ведущие 10 бит получились нулевые приведем это к шестнадцатиричному числу, получим 0 (первые десять), 3D5 (вторые десять))
  3. 0 + D800 = D800 (1101100000000000) первые 6 бит определяют что число из диапазона суррогатных пар десятый бит (справа) нулевой, значит это первый суррогат
  4. 3D5 + DC00 = DFD5 (1101111111010101) первые 6 бит определяют что число из диапазона суррогатных пар десятый бит (справа) единица, значит это второй суррогат
  5. итого данный символ в UTF-16 — 1101100000000000 1101111111010101

Теперь наоборот раскодируем. Допустим что у нас есть вот такой код — 1101100000100010 1101111010001000:

  1. переведем в шестнадцатиричный вид = D822 DE88 (оба значения из диапазона суррогатных пар, значит перед нами суррогатная пара)
  2. 1101100000100010 — десятый бит (справа) нулевой, значит первый суррогат
  3. 1101111010001000 — десятый бит (справа) единица, значит второй суррогат
  4. отбрасываем по 6 бит отвечающих за определение суррогата, получим 0000100010 1010001000 (8A88)
  5. прибавляем 10000 (меньшее число суррогатного диапазона) 8A88 + 10000 = 18A88
  6. смотрим в таблице юникода символ U+18A88 = Tangut Component-649. Компоненты тангутского письма.

Спасибо тем кто смог дочитать до конца, надеюсь было полезно и не очень занудно.

Вот некоторые интересные ссылки по данной теме:
habr.com/ru/post/158895 — полезные общие сведения по кодировкам
habr.com/ru/post/312642 — про юникод
unicode-table.com/ru — сама таблица юникод символов

Ну и собственно куда же без нее
ru.wikipedia.org/wiki/%D0%AE%D0%BD%D0%B8%D0%BA%D0%BE%D0%B4 — юникод
ru.wikipedia.org/wiki/ASCII — ASCII
ru.wikipedia.org/wiki/UTF-8 — UTF-8
ru.wikipedia.org/wiki/UTF-16 — UTF-16

Понравилась статья? Поделить с друзьями:
0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest

0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
  • Свойства дисков windows 10
  • Windows server 2019 активация rdp лицензий
  • Что выбрать imac или windows
  • Как установить драйвера intel hd graphics 3000 на windows 10
  • Dc040780 ошибка windows 10