«Для чего в команде ping используются опции Loose, Strict, Record, Timestamp и Verbose?» — такой вопрос мне недавно встретился в вендорном экзамене. Они позволяют влиять на маршрутизацию ICMP пакетов и собирать информацию о транзитных L3-устройствах. Но занимаясь сетевыми технологиями уже достаточно давно, я почти никогда их не использовал.
Мне стало не совсем понятно, почему такой вопрос вообще присутствует в тесте. Вернувшись домой, решил узнать, вдруг я действительно постоянно упускаю из виду что-то важное?
Утилита ping нам всем хорошо знакома. Помимо стандартного «ping 8.8.8.8», можно использовать различные опции, среди которых присутствуют интересующие нас. Их наименование и описание у вендоров примерно одинаковое.
Из наиболее часто используемых я бы отметил следующие.
- Количество отправляемых пакетов
Вместо заданного количества пакетов по умолчанию (например, в Windows — четыре, в оборудовании Cisco — пять), мы можем отправить нужное. Сюда же можно отнести многими любимую опцию «-t» в ОС Windows, которая запускает бесконечную отправку пакетов. - Интерфейс источника
В первую очередь актуально для сетевого оборудования. По умолчанию, при использовании команды ping устройство отправляет пакет с адресом ближайшего интерфейса к точке назначения. В случае тестирования функций NAT или проверки VPN, возникает необходимость отправлять ICMP пакеты с другого интерфейса. Ещё один классический пример: как доказать коллеге, что у него включён файрвол на хосте, а не сеть глючит. Запускаем ping с ядра сети без указания интерфейса – пингуется. С указанием неближайшего интерфейса – не пингуется. - Установка DF-бита
Пакет с установленным DF-битом (=1) не может фрагментироваться. Данную опцию удобно использовать для определения максимально допустимого размера кадра (MTU) между двумя точками. Обычно используется в связке параметрами ниже. - Размер пакета
Можно варьировать размер пакета. Вместе с установкой DF-бита помогает в определении MTU. Шлём большой пакет – 1500 байт. Не проходит. Шлём чуть меньше – 1300. Проходит. Шлём 1400. И так далее. В общем, метод дихотомии и MTU определён.
В Windows мы указываем размер сегмента данных ICMP пакета. На устройствах Cisco – размер пакета IP с учётом заголовков. - Вариация размера пакета в указанном диапазоне
Для тех, кто не любит метод дихотомии, может пригодиться данный режим. Мы указываем начальное значение размера пакета, конечное и шаг. Далее устройство отправляет пакеты, постепенно увеличивая их размер. Главное не забыть выставить DF-бит, а то всё насмарку.
За бортом остался ряд других опций (timeout, ToS и пр.), которыми лично я практически не пользуюсь.
Опции Loose, Strict, Record, Timestamp, Verbose включены в утилиту ping на многих сетевых устройствах. Есть поддержка в Windows.
Record (Record Route)
Пакет ICMP с опцией Record при прохождении через L3-устройства записывает IP-адреса исходящих интерфейсов. Делается это как в сторону пункта назначения, так и обратно. Это удобно, например, при диагностировании проблем, связанных с асинхронной маршрутизацией. Получается вроде traceroute, только лучше.
«Опции»
Слово «опции» я использую в двух контекстах: опции команды ping и опции в пакете ICMP. В случае ICMP, опции – это дополнительные параметры, которые устанавливаются в заголовке IPv4 (далее будем указывать просто IP) в поле Options. Поэтому корректнее, конечно, говорить про опции IP. ICMP просто их использует в своей работе.
Но рано радоваться: максимальное количество записей равно девяти. Причём в них входят данные об IP-адресах устройств в обе стороны. Обусловлено данное ограничением тем, что информация об IP-адресах сохраняется не в теле пакета, а в заголовке. Поле с опциями не может быть слишком большим. Оно ограничено 40 байтами. Нам, в конце концов, по сети нужно гонять полезные данные, а не заголовки. В этот объём помещается всего девять записей (4 байт на каждый IPv4 адрес). Оставшиеся (40-4*9)=4 байта уходят на отметку о типе опции, длине и пр. атрибутах. Напомню, максимальный размер всего заголовка IPv4 – 60 байт.
Запускаем с ПК под управлением ОС Windows ping с опцией Record Route (-r) до адреса 192.168.36.2:
C:\Users\user>ping -n 1 -r 9 192.168.36.2
Обмен пакетами с 192.168.36.2 по с 32 байтами данных:
Ответ от 192.168.36.2: число байт=32 время=12мс TTL=252
Маршрут: 192.168.31.2 ->
192.168.32.2 ->
192.168.34.2 ->
192.168.35.2 ->
192.168.36.2 ->
192.168.35.1 ->
192.168.33.1 ->
192.168.31.1 ->
192.168.20.1
Статистика Ping для 192.168.36.2:
Пакетов: отправлено = 1, получено = 1, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 12мсек, Максимальное = 12 мсек, Среднее = 12 мсек
Пакeт ICMP Echo Request c выставленной опцией Record Route (Type = 7) в заголовке IP:
ICMP Echo Request доходит до получателя. По пути в него добавляются адреса транзитных устройств. Получатель берёт заполненные поля опции IP заголовка, копирует их в ICMP Echo Reply и отправляет назад. Пока ICMP Echo reply доберётся до инициатора пинга, он обрастёт записями обратного маршрута.
В ответном пакете ICMP Echo Reply, который получит ПК, опция Record Route будет уже заполнена:
Можно заметить, что в нашей сети имеет место ассиметричная маршрутизация.
Пример ping с опцией Record на сетевом оборудовании Cisco.
R1#ping
Protocol [ip]:
Target IP address: 192.168.36.2
Repeat count [5]: 1
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface:
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]: R
Number of hops [ 9 ]:
Loose, Strict, Record, Timestamp, Verbose[RV]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 1, 100-byte ICMP Echos to 192.168.36.2, timeout is 2 seconds:
Packet sent with a source address of 192.168.20.1
Packet has IP options: Total option bytes= 39, padded length=40
Record route: <*>
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
(0.0.0.0)
Reply to request 0 (3 ms). Received packet has options
Total option bytes= 40, padded length=40
Record route:
(192.168.31.2)
(192.168.32.2)
(192.168.34.2)
(192.168.35.2)
(192.168.36.2)
(192.168.35.1)
(192.168.33.1)
(192.168.31.1)
(192.168.31.2) <*>
End of list
Success rate is 100 percent (1/1), round-trip min/avg/max = 3/3/3 ms
Timestamp
Когда пакет ICMP с опцией Timestamp проходит через L3-устройство, оно записывает в него метку с указанием текущего времени. Схема работы аналогична опции Record, только вместо адреса ставится время. Как и в предыдущем случае пакет может содержать только девять записей о времени (для ОС Windows – четыре, так как кроме временной метки, добавляется IP-адрес устройства).
Время в пакете указано в формате UNIX time. Анализ данных имеет хоть какой-то смысл, если все устройства синхронизированы по времени (в нашем примере этого нет).
Пример ping с опцией Timestamp (-s) на ПК под управлением ОС Windows.
C:\Users\user>ping -n 1 -s 4 192.168.36.2
Обмен пакетами с 192.168.36.2 по с 32 байтами данных:
Ответ от 192.168.36.2: число байт=32 время=4мс TTL=252
Отметка времени: 192.168.31.2 : 43990397 ->
192.168.32.2 : 43990389 ->
192.168.34.2 : 2187294073 ->
192.168.35.2 : 2190888543
Статистика Ping для 192.168.36.2:
Пакетов: отправлено = 1, получено = 1, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 4мсек, Максимальное = 4 мсек, Среднее = 4 мсек
Strict (Strict Source Route)
При использовании данной опции задаётся список IP-адресов L3-устройств, через которые ICMP пакет обязательно должен пройти. Причём именно в той последовательности, которую мы указали. Записей, по традиции, максимум девять.
Работает опция просто: на каждом хопе IP-адрес назначения меняется на тот адрес, который мы указали при запуске утилиты ping.
Все адреса хранятся в заголовке IP нашего ICMP пакета. Поэтому каждое транзитное устройство может их подсмотреть. Такая схема позволяет обходить текущие правила маршрутизации на каждом устройстве, так как фактически имеем пересылку пакета на соседнее устройство.
В нашей схеме R2 имеет маршрут в сеть 192.168.36.0/24 через R3. Но так как у нас жёстко прописаны устройства в опциях ICMP пакета, R2 передаст его напрямую на R4.
Запускаем утилиту ping с опцией -k (Strict Source Route) в ОС Windows и прописываем адреса устройств.
C:\Users\user>ping –n 1 -k 192.168.20.1 192.168.31.1 192.168.33.1 192.168.35.1 192.168.36.2
Обмен пакетами с 192.168.36.2 по с 32 байтами данных:
Ответ от 192.168.36.2: число байт=32 время=5мс TTL=252
Маршрут: 192.168.35.1 ->
192.168.33.1 ->
192.168.31.1 ->
192.168.20.1
Статистика Ping для 192.168.36.2:
Пакетов: отправлено = 1, получено = 1, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 5мсек, Максимальное = 5 мсек, Среднее = 5 мсек
Пакeт ICMP Echo Request c выставленной опцией Strict Source Route (Type = 137) в заголовке IP на нашем ПК выглядит следующим образом:
ПК подставил 192.168.20.1 в качестве адреса получателя. Остальные адреса транзитных устройств благополучно запаковал в поля опции IP (записи Source Route). Адрес конечного устройства добавил в запись Destination.
Этот же пакет, после того, как он минует R1:
IP-адрес отправителя остался без изменений. IP-адрес получателя поменялся на новый – 192.168.31.1. Это значение взято из поля Source Route, когда пакет ICMP только поступил на R1.
Важно отметить, что R1 занёс в поле опций новую запись — Recorded Route. Туда подставлен IP-адрес интерфейса R1. Данное поле понадобится, чтобы ответный пакет (ICMP Echo reply) вернулся по тому же маршруту, что и ICMP Echo request. Точно также будут поступать и остальные устройства. Поэтому, когда пакет ICMP попадёт на R5, в опции Strict Source Route будет содержаться список IP-адресов интересов, через которые должен пройти ответный пакет.
ICMP Echo reply, полученный ПК:
Поле Recorded Route переписывается по мере прохождения пакета ICMP Echo reply, так как там всегда указан адрес исходящего интерфейса для текущего пакета. Поэтому R1, когда получит ICMP Echo reply, заменит 192.168.31.2 на 192.168.20.1.
Если в команде ping мы опустим один из адресов, например, последний (192.168.35.1 – R5), R4 должен будет отправить пакет сразу на устройство с адресом 192.168.36.2. Но так как эта сеть не является для него локальной, R4 отрапортует о том, что заданный узел недостижим. Маршрутизировать пакет по обычным правилам он не будет.
Для обработки опции Record на сетевом оборудовании должен быть включен режим source routing. Например, на оборудовании Cisco он включён по умолчанию.
Loose (Loose Source Route)
Данная опция по сути очень похожа на опцию Strict. Но, в отличии от Strict, в опции Loose задаётся не жёсткий маршрут движения ICMP пакета, а лишь выборочные устройства. Т.е. пакет может маршрутизироваться и другими устройствами. Максимальное количество адресов – девять.
Схема работы аналогична предыдущему случаю. Разница в том, что пакет с опцией Loose может маршрутизироваться транзитными устройствами по обычным правилам.
Запускаем утилиту ping с опцией -j (Loose Source Route) в ОС Windows и прописываем адреса устройств.
C:\Users\user>ping -n 1 -j 192.168.32.1 192.168.36.2
Обмен пакетами с 192.168.36.2 по с 32 байтами данных:
Ответ от 192.168.36.2: число байт=32 время=4мс TTL=250
Маршрут: 192.168.32.1
Статистика Ping для 192.168.36.2:
Пакетов: отправлено = 1, получено = 1, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 4мсек, Максимальное = 4 мсек, Среднее = 4 мсек
Пакeт ICMP Echo Request c выставленной опцией Loose Source Route (Type = 131) в заголовке IP на нашем ПК выглядит так:
ПК подставил адрес R3 (192.168.32.1) в качестве получателя. При этом адрес конечного устройства R5 (192.168.36.2) указал в опции IP (запись Destination). Далее пакет маршрутизируется в сети по обычным правилам, пока не попадёт на R3. R3 подставит в качестве адреса назначения адрес R5 и в опциях пропишет свой адрес, через который должен будет вернуться ответный пакет (запись Recorded Route). После чего отправит его в сеть.
Ответный пакет ICMP Echo reply особого интереса не представляет, так как аналогичен ранее рассмотренным. В опциях будет указан адрес исходящего интерфейса R3 (запись Recorded Route), через который прошел пакет.
Verbose
Данная опция активируется автоматически при выборе любой из ранее описанных. Предоставляет более детальный вывод информации на экран. На сам пакет ICMP она никак не влияет. В Windows в команде ping такой опции нет.
Чтобы мы могли воспользоваться этими опциями, промежуточное оборудование должно их поддерживать. С этим проблем не будет. К новшествам мира ИТ относить весь этот «rocket science» не приходится. Напрашивается вывод: опции Loose, Strict, Record, Timestamp могут быть полезны, даже с учётом ограничения в «девять». Если бы не следующие нюансы, связанные с безопасностью.
Первое. Опции Record и Timestamp могут благополучно использоваться для проведения разведки в сети. С их помощью можно исследовать топологию сети, получить отпечатки, по которым определить ОС и тип устройства, через которые проходил пакет с данными опциями.
Второе. Опции Loose и Strict позволяют управлять движением пакета, игнорируя стандартные правила маршрутизации. Это предоставляет широкие возможности для попыток проникновения в различные сегменты сети, куда в случае обычной маршрутизации доступа не должно быть. Также возможно проведение разведки для анализа топологии сети. Проведение атак по утилизированию полосы пропускания на определённых сегментах сети. Вариантов много.
Третье. Часть сетевого оборудования обрабатывает пакеты с установленными опциями программным образом на уровне control-plane (без использования различных схем оптимизации маршрутизации трафика), что безусловно нагружает ЦПУ. А значит есть возможность осуществить DoS атаку на такое устройство.
Многие вендоры (есть даже отдельное RFC 7126) рекомендуют пакеты с указанными опциями никак не обрабатывать. Варианты предлагают разные. Вплоть до отбрасывания таких пакетов. Правда у некоторых из производителей бывают диссонансы: с одной стороны рекомендуем отбрасывать такие пакеты, с другой — «Record is a very useful option».
Быстрая попытка проверить соответствие этим рекомендациям у пары интернет-провайдеров показали, что часть опций всё-таки работает. Но source routing отключён везде.
Получается интересный вывод. Опции Loose, Strict, Timestamp, Record могут быть полезны при диагностике проблем в сети. Но вопрос безопасности нивелирует это.
В итоге у меня всё-таки осталось чувство непонимания. Почему озвученный в начале вопрос присутствовал в тесте? Относительно полезна опция Record и то при небольшой глубине сети. Остальные опции под вопросом.
Напоследок небольшой опрос. Всем хорошего дня!
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Пользуетесь ли Вы опциями Loose, Strict, Timestamp, Record?
1.35% Я их просто блокирую6
23.99% Да, жена заставляет107
Проголосовали 446 пользователей. Воздержались 76 пользователей.
Привет, посетитель сайта ZametkiNaPolyah.ru! Эта запись будет про простую, но очень полезную стандартную сетевую утилиту ping и о том, как ею пользоваться из командной строки Windows. Возможности команды ping скромны, но ее можно быстро проверить доступность удаленного ресурса или сервера, оценить потери и задержки, хотя и не очень точно. Почему не очень точно? Об этом вы узнаете из данной записи, а также здесь вы найдете простую инструкцию о том, как при помощи команды ping проверить домашнюю сеть и интернет соединение.
Если вам интересна тема компьютерных сетей, то в блоге уже практически закончена первая часть курса по основам компьютерных сетей, можете ознакомиться с ее содержимым. И вот здесь можно получить немного информации о самом курсе основанном на Cisco ICND1.
Содержание статьи:
- 1 Что такое пинг и как работает эта команда?
- 2 Как проверить пинг?
- 3 Параметры команды Ping в Windows
- 4 Примеры использования утилиты Ping для сетевой диагностики
- 4.1 Бесконечный пинг удаленного узла
- 4.2 Как задать число пакетов команде Ping
- 4.3 Как узнать имя узла/доменное имя при пинге IP-адреса
- 4.4 Как задать размер пакетов при пинге и запретить фрагментацию пакетов при использовании команды Ping
- 4.5 Как узнать маршрут до удаленного узла при помощи утилиты Ping
- 4.6 Другие полезные параметры утилиты Ping
- 5 Как диагностировать домашнюю локальную сеть и интернет при помощи команды Ping
- 5.1 Как проверить сетевые программные компоненты компьютера при помощи утилиты Ping
- 5.2 Проверяем работу роутера и физических интерфейсов компьютера при помощи команды Ping
- 5.3 Проверяем интернет канал, который предоставляет нам провайдер при помощи утилиты Ping
- 6 Простые советы и рекомендации по использованию утилиты Ping при сетевой диагностики
- 7 Выводы
Что такое пинг и как работает эта команда?
Команда Ping – одна из самых используемых сетевых утилит интерпретатора командной строки, присутствующая в стандартном наборе программных средств любой операционной системы с поддержкой сетевого взаимодействия. Утилита Ping является самым простым и удобным средством проверки доступности удаленного узла. Данная утилита есть не только в операционных системах для настольных ПК и серверов, например, операционных системах семейства Windows или UNIX-подобных операционных системах, к которым относится Linux (вот здесь можете немного прочитать про дистрибутив Linux Mint). Но также эта утилита есть среди стандартных компонентов многих сетевых устройств, скорее всего, ваш домашний роутер тоже умеет пинговать удаленные узлы.
Правда стоит сказать, что возможности утилиты Ping в домашнем роутере куда более скромные, нежели возможности команды Ping компьютера, на котором установлена Windows. Ну а если запустить эмулятор терминала Linux и посмотреть на параметры команды Ping там (именно параметры определяют возможности), то станет ясно, что реализация данной программы в Windows очень скромная, с ней мы и познакомимся в данной записи.
Программа Ping в Windows представлена одним файлом — ping.exe, этот файл находится в папке System32: c:\Windows\System32. Но сейчас нам это не особо интересно, куда интереснее понять, как работает данная команда, и какие возможности есть нее при использовании из командной строки Windows. Стоит отметить, что для ее использования вам не потребуется запускать командную строку от имени администратора.
Итак, мы уже выяснили, что команда Ping используется для проверки доступности удаленных узлов в компьютерной сети (сеть Интернет это тоже компьютерная сеть), для своей работы эта утилита использует протокол ICMP (Internet Control Message Protocol или протокол межсетевых управляющих сообщений), этот протокол работает на сетевом уровне модели стека протоколов TCP/IP (эта информация нам потребуется чуть ниже).
Как правило, в сетевом взаимодействие принимает участие, как минимум, две стороны, а между этими устройствами есть канал связи, в котором могут быть транзитные узлы и линии передач разного качества, чтобы косвенно оценить качество канала связи между точками А и Б, можно использовать команду Ping. Давайте договоримся, что точкой А будет наш компьютер, а точкой Б — удаленный узел.
Когда мы запустим командную строку и напишем ping <адрес удаленного узла> (в качестве адреса удаленного узла можно использовать как IP-адреса, так и доменные имена или имена хостов) и нажмем Enter, наш компьютер сформирует специальное сообщение, которое называется ICMP Echo-Request, это сообщение он запакует в IP-пакет (вспоминаем про инкапсуляцию данных в компьютерной сети), у пакета есть специальное поле IP-адрес назначения, в которое компьютер запишет IP-адрес удаленного узла, а также есть поле IP-адрес источника, в это поле компьютер запишет свой IP-адрес, чтобы на точке Б знали куда посылать ответ.
Также стоит заметить, что ICMP-запрос, который будет сформирован компьютером представляет собой сообщение, состоящее из двух больших частей:
- Заголовка (ICMP Header), в котором содержится вся служебная информация, в том числе и тип сообщения, то есть по заголовку можно понять чем является данное сообщение — запросом или ответом. Заголовок ICMP сообщения является обязательной его частью, размер заголовка составляет 8 байт.
- Тело сообщения или полезные данные (ICMP Payload) не является обязательной частью ICMP-сообщения, но при использовании команды Ping поле данных ICMP сообщения обычно заполняется символами английского алфавита.
Когда ICMP-запрос нашего компьютера дойдет до удаленного узла, он принимает решение о том, что с ним делать, удаленный узел может быть настроен таким образом, что вообще не будет отвечать на ICMP-запросы, но давайте представим, что удаленный узел решил ответить на наш запрос, в ответ он пошлет ICMP-ответ, а если быть точным, то ICMP Echo-Reply, размере заголовка ответа не изменится, он в любом случае 8 байт (изменятся некоторые значения заголовка), но еще удаленный узел должен будет поместить в поле данных ICMP-ответа те же самые данные, которые он получил в запросе, а затем послать его обратно нам на точку А.
Эта схема взаимодействия очень похожа на модель клиент-сервер, только с той разницей, что здесь нет явных ролей клиента и сервера: если точка А посылает запросы, то ответы ей будет давать точка Б, а если точка Б будет слать запросы, то отвечать придется точке Б, стоит еще заметить, что обмен ICMP сообщениями, строго говоря, не вписывается в модель клиент-сервер. ICMP-запрос нельзя считать попыткой компьютера получить услугу от удаленной стороны, а ответ удаленной стороны нельзя считать оказанием услуги, это просто служебные сообщения, которые позволяют нам убедиться, что связь между узлами есть.
Давайте запустим командую строку Windows и на практике посмотрим как работает утилита ping, напишите ping 8.8.8.8.
Как работает команда Ping в Windows
У команды Ping в любой операционной системе есть один обязательный параметр — адрес удаленного узла, я уже говорил, что это может быть как имя хоста, так и IP-адрес, в данном случае мы пинговали публичный ДНС-сервер Гугл по IP-адресу. По умолчанию команда Ping в Windows оправляет четыре запроса к удаленному узлу, также утилита в Windows по умолчанию задает размер полезных данных ICMP сообщения равным 32-ум байтам, каждый запрос упаковывается в IP-пакет, у которого есть поле TTL (time to live), по умолчанию команда Ping задает значение этому полю равное пятьдесят пять, все эти параметры можно менять, но об этом ниже.
Обратите внимание: после того как команда Ping закончила свою работу, она предоставила нам общую информацию, в данном случае мы видим, что было отправлено четыре пакета, получено четыре ответа и ни одного потерянного пакета, а также есть сводная информация о времени прохождения пакетов по сети: максимальное время, среднее время и минимальное время, в данном случае получилось, что этих три числа одинаковые, но так бывает не всегда.
Еще в выводе утилиты Ping видно время прохождения пакета по сети, можно сказать, что когда наш ПК отправляет запрос в сторону удаленного узла, он включает таймер, который считает сколько времени прошло, как только наш ПК получает ответ на запрос он выключает таймер и фиксирует время, если удаленный узел недоступен, мы не ждем до бесконечности, по умолчанию утилита Ping в Windows использует максимальное время ожидания четыре секунды, это время можно менять.
Давайте попробуем пропинговать удаленный узел, используя доменное имя, пинговать будем домен компании Майкрософт, все дело в том, что некоторые сервера этой компании не отвечают на ICMP-запросы.
Передаем в качестве параметра команде Ping доменное имя
На скрине выше вы видите два результата работы команды Ping: в первом случае мы пинговали домен microsoft[точка]com, этот домен висит на IP-адресе 104.43.195.251, об этом нам сказала команда Ping, мой ПК отправил четыре запроса и ни разу не получил ответ, просто сервер Майкрософта не отвечает на запросы, при попытке пропинговать адрес 104.43.195.251, вы точно также получите четыре раза сообщение о том, что «Превышен интервал ожидания для запроса». Вообще, сообщения могут быть разными и сообщают они нам о разных ситуациях, но об этом мы будем говорить, когда начнем разбираться с протоколом ICMP.
Если вы откроете браузер и попробуете написать в адресной строке 104.43.195.251 или microsoft[точка]com, то сервер Майкрософт вас перенаправит на домен www[точка]microsoft[точка]сom, если пропинговать этот домен, то мы получим от него ответ, более того, команда Ping нам подскажет IP-адрес домена www[точка]microsoft[точка]сom, а также сообщит имя хоста (e13678.dspb.akamaiedge.net). Думаю, с назначением команды Ping все ясно.
Как проверить пинг?
Вообще, вопрос «как проверить пинг?» некорректный, потому что при помощи утилиты Ping мы проверяем не пинг как таковой, а делаем косвенную оценку качеству канала связи между точкой А и точкой Б (об особенностях, которые есть между точкой А и Б мы поговорим в конце этой публикации), оценка косвенная, потому что при пинге узла где-нибудь в Америке неизвестных для нас факторов больше, чем известных.
Например, вы запустили пингуете игровой сервер в Австралии и получаете время ответа (иначе это время называется RTT – Round Trip Time) 90 миллисекунд. Хорошо это или плохо? На самом деле трудно сказать. Для того чтобы делать какие-то выводы, например, о качестве, а вернее о возможностях вашего провайдера предоставить качественную (в вашем понимание) связь с конкретным Австралийским сервером, вам нужно провести несколько тестов. Во-первых, оценить трассу до этого сервера при помощи утилиты tracert, затем проверить эту трассу на потери при помощи утилит mtr, WinMTR или pathping.
Потом связаться с представителями Австралийского сервера, попросить их сделать то же самое в вашу сторону. Потом найти 5-6 друзей в своем городе, которые подключены к другим провайдерам, повторить все эти процедуры на их компьютерах, а также попросить своих австралийских коллег о том, чтобы они сделали те же самые тесты до 5-6 узлов ваших друзей.
Если результаты с вашего ПК гораздо хуже, чем у одного из ваших друзей, то это еще не означает, что у него Интернет лучше, это означает, что его провайдер может предоставить канал до конкретного сервера с меньшими задержками/потерями. Не спешите менять провайдера, для начала попробуйте обратиться в тех. поддержку своего, возможно, они решат вашу проблему, это причина номер раз. Для меня причина номер два заключается в том, что мне просто было бы лень менять провайдера и проходит через все эти адовы муки подключения и беготни.
Ну а причина номер три заключается в том, что провайдеры постоянно взаимодействуют друг с другом и может получиться так, что по каким-то коммерческим или юридическим причинам канал до австралийского сервера на вашем новом провайдера в один прекрасный день станет хуже чем тогда, когда вы на него перешли. В общем, какие выводы надо сделать? Вопрос: «как проверить пинг?», в корне неправильный, при помощи команды Ping мы лишь можем оценить потери до удаленного узла, а также время ответа удаленного сервера, то есть получить косвенную информацию о качестве канала связи (про другие характеристики компьютерной сети можно почитать немного здесь).
Параметры команды Ping в Windows
Теперь давайте посмотрим на параметры команды Ping в Windows. Для этого воспользуемся конструкцией, которая позволяет получить справку в командной строке (/?), команда будет выглядеть так: ping /?. Кстати говоря, если написать команду Ping без параметров, то в результате вы получите список доступных параметров. Стандартная команда help не даст вам подсказку.
[php]
Использование: ping [-t] [-a] [-n <число>] [-l <размер>] [-f] [-i <TTL>]
[-v <TOS>] [-r <число>] [-s <число>]
[[-j <список_узлов>] | [-k <список_узлов>]]
[-w <время_ожидания>] [-R] [-S <адрес_источника>]
[-c секция] [-p] [-4] [-6] конечный_узел
Параметры:
— t Проверяет связь с указанным узлом до прекращения.
Для отображения статистики и продолжения проверки
нажмите клавиши CTRL+BREAK;
для прекращения нажмите CTRL+C.
— a Разрешает адреса в имена узлов.
— n <число> Число отправляемых запросов проверки связи.
— l <размер> Размер буфера отправки.
— f Устанавливает флаг, запрещающий фрагментацию,
в пакете (только IPv4).
— i <TTL> Срок жизни пакетов.
— v <TOS> Тип службы (только IPv4; этот параметр
использовать не рекомендуется, и он не влияет на поле
TOS в заголовке IP).
— r <число> Записывает маршрут для указанного числа прыжков
(только IPv4).
— s <число> Задает метку времени для указанного числа прыжков
(только IPv4).
— j <список_узлов> Задает свободный выбор маршрута по списку узлов
(только IPv4).
— k <список_узлов> Задает жесткий выбор маршрута по списку узлов
(только IPv4).
— w <время_ожидания> Задает время ожидания каждого ответа (в миллисекундах).
— R Использует заголовок маршрута для проверки и обратного
маршрута (только IPv6). В соответствии с RFC 5095,
использование этого заголовка маршрута не рекомендуется.
В некоторых системах запросы проверки связи могут быть
сброшены, если используется этот заголовок.
— S <адрес_источника> Задает адрес источника.
— c секция Идентификатор секции маршрутизации.
— p Проверяет связь с сетевым адресом поставщика
виртуализации Hyper-V.
— 4 Задает принудительное использование протокола IPv4.
— 6 Задает принудительное использование протокола IPv6.
[/php]
Как видите, справка Windows дает подробные и четкие пояснения по параметрам, которые можно использовать вместе с утилитой Ping. Стоит только добавить, что у данной утилиты есть один обязательный параметр — адрес удаленного узла, который может быть представлен как в виде IP-адреса, так и в виде доменного имени сайта или сервера.
Примеры использования утилиты Ping для сетевой диагностики
Давай теперь рассмотрим самые полезные и часто используемые вариации использования утилиты Ping для диагностики сети и проверки доступности удаленных ресурсов и серверов. К сожалению, как и в случае с командной tracert, здесь совершенно не будет примеров с использование протокола IPv6.
Бесконечный пинг удаленного узла
Команда Ping имеет параметр, который позволяет пинговать удаленный узел бесконечно, это параметр -t. Чтобы бесконечно пинговать удаленный узле, нужно написать так: ping -t 8.8.8.8 (вместо 8.8.8.8 вы можете использовать любой другой IP-адрес).
Пример использования параметра -t с командной Ping, как сделать бесконечный пинг
Обратите внимание, на скриншоте статистика работы команды Ping показана два раза: сперва для первых пяти пакетов, а затем для всех отправленных пакетов. Когда вы делаете бесконечный пинг, можно посмотреть промежуточную статистику не прерывая выполнение, для этого нужно воспользоваться сочетанием клавиш ctrl+break. Чтобы остановить бесконечный пинг, воспользуйтесь сочетанием клавиш ctrl+c.
Как задать число пакетов команде Ping
Утилита Ping в операционной системе Windows по умолчанию отправляет четыре пакета, иногда этого бывает недостаточно для проверки удаленного узла, иногда требуется отправить большее число ICMP-запросов. Для указания количество запросов к удаленному узлу у команды Ping есть параметр -n: ping -n 7 8.8.8.8.
Пинг удаленного узла с заданным числом пакетов, параметр -n команды Ping
Естественно, вы не сможете использовать параметры -n и -t вместе, так как первый говорит команде сколько пакетов отправить, а второй говорит о том, что нужно слать пинги бесконечно.
Как узнать имя узла/доменное имя при пинге IP-адреса
Обычно, у публичного IP-адреса в сети Интернет есть hostname или имя хоста, команда Ping позволяет узнать имя хоста при помощи параметра -a. Работает это всё вот таким образом.
Определяем имя хоста при пинге IP-адреса
Обратите внимание: если имя хоста не задано, то параметр -a ничего не покажет, в данном случае приватный IP-адрес 192.168.0.1 прописан на моем домашнем роутере.
Как задать размер пакетов при пинге и запретить фрагментацию пакетов при использовании команды Ping
Давайте теперь поговорим о том, как задать размер пакетов при пинге удаленного узла в командной строке Windows, а потом разберемся с фрагментацией IP-пакетов при использовании команды Ping. В операционных системах Windows при изменение размера пакетов для команды Ping есть одна небольшая, но очень важная особенность, о которой не все знают. Чтобы о ней рассказать, я должен убедиться что у вас есть представление о принципах работы моделей передачи данных, а также вы знаете и представляете как работает процесс инкапсуляции и декапсуляции данных в компьютерных сетях (модель OSI 7 и еще одна публикация по эталонной модели).
Дело всё в том, что ICMP-запрос, который посылает утилита Ping, представляет собой пакет, состоящий из двух частей: заголовка и полезных/бесполезных данных, размер заголовка ICMP составляет 8 байт. Чтобы ICMP-пакет смог дойти до узла назначения, он запаковывается в IP-пакет, который, как ни странно, тоже состоит из двух частей: заголовка и данных. Размер заголовка в протоколе IPv4 равен 20 байт.
А чтобы запрос смог дойти от вашего компьютера до домашнего роутера, IP-пакет помещается внутрь Ethernet кадра, но это для нас сейчас не важно. Наверное, не все читатели знают, поэтому мне стоит отметить, что на транспортном, сетевом и канальном уровнях модели передачи данных у сообщений этих уровней есть MTU (Maximum Transmission Unit) или максимальный размер полезной информации, который можно поместить в сообщение на том или ином уровне. При подключении вам провайдер сообщает максимально допустимое значение MTU, которое можно использовать, обычно, это значение 1500 байт, если провайдер подключает вас при помощи протокола PPPoE, то это значение 1492 байта. При этом MTU, которое сообщает вам провайдер, относится к канальному уровню, то есть Ethernet MTU. На рисунке ниже показаны настройка MTU на моем роутере.
Значение MTU на домашнем роутере
А еще есть IP MTU (то есть максимальный размер полезных данных в IP-пакете) и есть размер пакетов, которые вы задаете при использовании команды Ping в Windows. Поэтому, когда вы используете команду Ping на разных устройствах с разными операционными системами, всегда узнавайте как работает эта команда, а потом только начинайте ее применять.
Когда вы задаете размеров пакетов при пинге из командной строки Windows, вы задаете размер полезных данных без учета заголовков протоколов IP и ICMP (то есть 28 байт не учитываются, но они есть), то есть если в Windows написать ping -l 1500, то на самом деле размер полезных данных в Ethernet кадре будет равен 1528 байт (так как для Ethernet кадра полезными данными является IP-пакет со всем его содержимым), а этом уже больше, чем разрешает нам провайдер. Давайте в этом убедимся.
[php]
C:\Users\Dell>ping -l 1500 8.8.8.8
Обмен пакетами с 8.8.8.8 по с 1500 байтами данных:
Ответ от 8.8.8.8: число байт=1500 время=45мс TTL=55
Ответ от 8.8.8.8: число байт=1500 время=43мс TTL=55
Ответ от 8.8.8.8: число байт=1500 время=43мс TTL=55
Ответ от 8.8.8.8: число байт=1500 время=43мс TTL=55
Статистика Ping для 8.8.8.8:
Пакетов: отправлено = 4, получено = 4, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 43мсек, Максимальное = 45 мсек, Среднее = 43 мсек
[/php]
Первый раз я использовал команду ping -l 1500 8.8.8.8, то есть я задал размер 1500 байт, но почему-то, вопреки моим словам сказанным ранее, пинг до удаленного узла прошел, всё дело в том, что утилита Ping в Windows по умолчанию выполняет фрагментацию данных, то есть, если пакеты слишком большие и их невозможно пропихнуть в канал связи, то они разбиваются на более мелкие пакеты и только потом отправляются. В этом можно убедиться, если воспользоваться вот такой командной: ping -l 1500 -f 8.8.8.8. Параметр -f запрещает команде ping выполнять фрагментацию пакетов.
[php]
C:\Users\Dell>ping -l 1500 -f 8.8.8.8
Обмен пакетами с 8.8.8.8 по с 1500 байтами данных:
Требуется фрагментация пакета, но установлен запрещающий флаг.
Требуется фрагментация пакета, но установлен запрещающий флаг.
Требуется фрагментация пакета, но установлен запрещающий флаг.
Требуется фрагментация пакета, но установлен запрещающий флаг.
Статистика Ping для 8.8.8.8:
Пакетов: отправлено = 4, получено = 0, потеряно = 4
(100% потерь)
[/php]
Я уже говорил, что в моем случае максимально возможный размер пакета равен 1472 байта, так получается из-за особенностей работы утилиты пинг в Windows, которая не учитывает размер ICMP и IP заголовков, плюс провайдер мне поставил ограничение MTU равное 1500 байт.
[php]
C:\Users\Dell>ping -l 1472 -f 8.8.8.8
Обмен пакетами с 8.8.8.8 по с 1472 байтами данных:
Ответ от 8.8.8.8: число байт=1472 время=43мс TTL=55
Ответ от 8.8.8.8: число байт=1472 время=43мс TTL=55
Ответ от 8.8.8.8: число байт=1472 время=43мс TTL=55
Ответ от 8.8.8.8: число байт=1472 время=43мс TTL=55
Статистика Ping для 8.8.8.8:
Пакетов: отправлено = 4, получено = 4, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 43мсек, Максимальное = 43 мсек, Среднее = 43 мсек
C:\Users\Dell>ping -l 1473 -f 8.8.8.8
Обмен пакетами с 8.8.8.8 по с 1473 байтами данных:
Требуется фрагментация пакета, но установлен запрещающий флаг.
Требуется фрагментация пакета, но установлен запрещающий флаг.
Требуется фрагментация пакета, но установлен запрещающий флаг.
Требуется фрагментация пакета, но установлен запрещающий флаг.
Статистика Ping для 8.8.8.8:
Пакетов: отправлено = 4, получено = 0, потеряно = 4
(100% потерь)
C:\Users\Dell>
[/php]
Как видим, при использовании команды ping -l 1472 -f 8.8.8.8, пакеты доходят до конечного узла, но стоит немного увеличить размер пакета и они уже не уйдут дальше моего компьютера, это видно по результатам работы команды ping -l 1473 -f 8.8.8.8. Стоит отметить, что команда Ping может принимать сразу несколько параметров, главное, чтобы эти параметры не противоречили друг другу. Например, мы можем пропинговать удаленный узел, задав нужно количество пакетов и их размер, а также запретив фрагментацию пакетов.
Задаем количество пакетов и их размер для команды Ping в Windows
Вот такие особенности есть у команды Ping в Windows при использование параметров -l и -f, учитывайте их, когда будете применять.
Как узнать маршрут до удаленного узла при помощи утилиты Ping
Вообще, маршрут до удаленного узла лучше узнавать с помощь специальных предназначенных для этого утилит: tracert, traceroute, pathping, mtr, winmtr. Но и команда Ping имеет полезный параметр для этих целей, параметр -r, но есть одно ограничение: параметр -r не может принимать значение больше 9.
Определяем маршрут до удаленного узла при помощи утилиты Ping
Здесь вместе с параметром -r я использовал параметр -n, чтобы отправить только один пакет и получил девять переходов (посчитайте количество IP-адресов в трассе), давайте сравним полученный результат с тем, что выдаст нам команда tracert, ее вывод показан на рисунке ниже.
Пользуемся утилитой tracert для того, чтобы узнать маршрут до удаленного узла
Как видим, результаты очень сильно отличаются! Во-первых, я немного обманул, сказав, что утилита Ping позволяет узнать маршрут до удаленного узла, на самом деле она показывает переходы между узлами, а во-вторых, обратите внимание на то, что промежуточные IP-адреса, полученные командой Ping, отличаются от тех, что мы получили при помощи tracert, пока я вам предлагаю найти ответ в Гугле, почитайте про ICMP протокол и как с ним работают сетевые маршрутизаторы, я же отвечу на этот вопрос в другой публикации.
Также замечу, что есть еще параметр -s, который не работает вместе -r, этот параметр также позволяет отображать переходы при пинге, но в добавок к этому, он показывает еще и метку времени, максимальное значение для этого параметра равно четырем.
Другие полезные параметры утилиты Ping
Стоит упомянуть о еще трех параметрах утилиты Ping в Windows: -w, -S и -i. Этими параметрами вы будете пользоваться не так часто, но вероятность их использования есть, поэтому стоит вкратце о них рассказать. Начнем с параметра -w, который позволяет задать время ожидания ответа от удаленного узла (ваш компьютер не до бесконечности ждет ответа), по умолчанию команда Ping в Windows использует значение 4000 мс или 4 секунды, в нормальной ситуации этого достаточно, но если канал связи очень плохой, то можно попробовать увеличить это значение, чтобы убедиться, что на том конце есть кто-то живой. Значение параметра -w задается в миллисекундах: ping -w 6000 8.8.8.8, в данном случае компьютер будет ждать ответа 6 секунд.
Второй параметр -i позволяет задать TTL (time to live) или количество узлов, которое может пройти пакет, перед тем как он будет уничтожен, то есть, если между вашим ПК и удаленным компьютером находится больше 54 маршрутизатора, то запрос от вас не дойдет до адресата, он будет уничтожен. TTL – это специальное поле в заголовке IP-пакета, которое используется для борьбы с петлей маршрутизации (ситуации, когда маршрутизаторы сконфигурированы не верно и IP-пакет бегает между ними кругами, чтобы не нарезать круги бесконечно, пакету задается значение TTL, максимальное значение TTL равно 255). Допустим ваш компьютер сформировал IP-пакет и присвоил ему значение TTL равное 30, когда пакет попадет с вашего компьютера на домашний роутер, он его обработает и прежде чем отправить пакет дальше, он вычтет из значения TTL единицу, дальше пакет попадет на роутер провайдера с TTL равным 29, этот роутер тоже вычтет единицу и пошлет пакет дальше.
Команда ping в Windows по умолчанию задает пакетам значение TTL равное 55, этого более чем достаточно в обычной ситуации, но если вы хотите изменить TTL при пинге, воспользуйтесь такой командной: ping -i 200 8.8.8.8, теперь в поле TTL будет указано значение 200.
Третий параметр утилиты Ping -S, в данном случае регистр символов имеет значение: -s позволяет увидеть метку времени, а -S позволяет задать IP-адрес источника, эта бывает полезно в тех ситуациях, когда на вашем узле прописано сразу несколько IP-адресов, параметр -S позволяет задать IP-адрес, с которого будет пинговаться удаленный узел, когда мы говорили про команду tracert, я упоминал, что маршрут «туда» может отличаться от маршрута «обратно», IP-адрес источника при пингах и трассировках не влияет на маршрут «туда», но зато он может повлиять на маршрут обратно, поэтому время прохождения пакетов по сети с разных IP-адресов на одном устройстве может быть различным, вот пример использования параметра -S: ping -S 34.48.99.200 google.com. Здесь мы пингуем сервер Гугла с IP-адреса 34.48.99.200.
Как диагностировать домашнюю локальную сеть и интернет при помощи команды Ping
При помощи утилиты Ping можно легко диагностировать домашнюю сеть. Во-первых, перед использованием команды Ping, вам нужно будет использовать команду ipconfig, с помощью которой можно узнать IP-адрес вашего компьютера и IP-адрес основного шлюза, то есть локальный IP-адрес роутера (на домашнем роутере обычно используется два IP-адреса: один IP-адрес для взаимодействия с устройствами локальной сети, для этих устройств этот IP-адрес является адресом основного шлюза или шлюза по умолчанию, а второй IP-адрес используется для соединения с провайдерским роутером, его можно найти в разделе настроек WAN в роутере).
Вернемся к команде ipconfig, напишите ее в командной строке и нажмите Enter, вы получите большой вывод, который я не буду демонстрировать на скриншоте, а покажу лишь тот фрагмент, который нам нужен для диагностики домашней сети и сетевого интерфейса моего ПК.
[php]
Адаптер беспроводной локальной сети Беспроводная сеть:
DNS-суффикс подключения . . . . . :
Локальный IPv6-адрес канала . . . : fe80::d86b:69ce:ccc4:d47f%9
IPv4-адрес. . . . . . . . . . . . : 192.168.0.101
Маска подсети . . . . . . . . . . : 255.255.255.0
Основной шлюз. . . . . . . . . : fe80::e459:13ff:fe85:8eda%9
192.168.0.1
[/php]
Здесь мы видим IP-адрес моего компьютера: 192.168.0.101, маску подсети, в которой находится мой компьютер: 255.255.255.0, а также адрес основного шлюза, то есть IP-адрес интерфейса роутера, который «смотрит» в мою локальную сеть: 192.168.0.1, воспользовавшись этим IP-адресом, можно зайти в web-интерфейс роутера при помощи браузера, чтобы изменить его настройки.
Как нам это поможет при диагностике домашней сети? Всё очень просто! Мы будем пинговать эти адреса и смотреть на потери.
Если у вас появились какие-то проблемы с выходом в Интернет, не спешите звонить в тех. поддержку своего провайдера (решение проблемы от этого может только затянуться), с большей долей вероятности проблема в вашей локальной сети, решение такой проблемы через провайдера — долгое занятие, если тех. поддержка не увидит у себя на сети никаких проблем, то просто пришлет к вам своего специалиста с ноутбуком, он подключится к вашему интернету, покажет, что всё работает и вам всё равно придется решать свою проблему самому, провайдер не отвечает за работоспособность вашей домашней сети.
Как проверить сетевые программные компоненты компьютера при помощи утилиты Ping
Давайте теперь посмотрим чем нам может помочь команда Ping. Для начала вам нужно проверить правильность работы сетевых библиотек и других сетевых программных компонентов вашего ПК. Для этого можно воспользоваться loopback ip-адресом или петлевым сетевым интерфейсом 127.0.0.1, такой адрес должен пинговаться всегда без потерь даже без подключения к Интернету, так как пингуя этот IP-адрес, вы пингуете сами себя, поэтому это называется петлевой интерфейс.
Петлевой интерфейс должен пинговаться быстро и без потерь, так как в данном случае нет никаких внешних линий связи, для его диагностики рекомендую использовать вот такую вариацию команды ping: ping -w 2 -l 1500 -n 1000 -f 127.0.0.1. Таким образом мы пингуем сами себя пакетами, размер которых равен максимально допустимому в сети провайдера (мы запретили фрагментацию), время ожидания мы задали 2 мс, хотя это уже много, в идеале время ответа удаленного узла в данной ситуации должно быть меньше 1 мс (в данном случае удаленный узел вовсе никакой не удаленный, а ваш собственный).
Если в результате вы увидели примерно такую картину, как на рисунке ниже, то вероятно проблем с сетевыми программными модулями у вас нет (вероятно, потому что у вас могут быть прописаны какие-нибудь прокси-сервера или заданы правила брандмауэра или файрвола, которые могут влиять на выход в сеть Интернет).
Проверяем программные сетевые компоненты компьютера при помощи команды Ping
Командой ping 127.0.0.1 мы проверяем связь внутри компьютера, но эта команда не проверяет корректность физических интерфейсов вашего ПК.
Проверяем работу роутера и физических интерфейсов компьютера при помощи команды Ping
Что понимается под словосочетанием физический интерфейс? Под ним понимается сетевая карта и ее порт, а также Wi-Fi модуль вашего компьютера. Вероятно, ваш компьютер подключен к роутеру, подключение компьютера к роутеру может быть как по Wi-Fi, так и по витой паре, один конец которой включен в ваш ПК, а другой в роутер. Проблемы могут быть и на этом участке, и их можно обнаружить командой ping. Ранее мы узнали локальный IP-адрес моего ПК и IP-адрес роутера, который «смотрит» в мою локальную сеть. Чтобы проверить работоспособность сетевых компонентов, участвующих в организации связи между ваши ПК и роутер, можно пропинговать IP-адрес роутера вот такой командной: ping -w 2 -l 1472-n 1000 -f 192.168.0.1. В данном случае мы поменяли только IP-адрес и размер пакетов (в моем роутере задан MTU 1500 байт, куда делись 28 байт вы должны помнить, писал выше), так как задержки в вашей маленькой локальной сети (в пределах квартиры или малого офиса) должны быть минимальны, если есть потери, это уже плохо, потерь быть не должно. Для начала попробуйте увеличить значение параметра -w до 20-30 мс, если наблюдается разброс по времени, то это тоже плохо, это означает, что есть проблема на участке между вашим ПК и домашним роутером. Если проблем нет, то в результате вы должны увидеть примерно такую картину.
[php]
Ответ от 192.168.0.1: число байт=1472 время=1мс TTL=64
Ответ от 192.168.0.1: число байт=1472 время=1мс TTL=64
Ответ от 192.168.0.1: число байт=1472 время=1мс TTL=64
Ответ от 192.168.0.1: число байт=1472 время=1мс TTL=64
Ответ от 192.168.0.1: число байт=1472 время=1мс TTL=64
Ответ от 192.168.0.1: число байт=1472 время<1мс TTL=64
Статистика Ping для 192.168.0.1:
Пакетов: отправлено = 1000, получено = 1000, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 0мсек, Максимальное = 7 мсек, Среднее = 1 мсек
C:\Users\Dell>
[/php]
Выявить проблему не трудно: если ваш компьютер связан с роутером по Wi-Fi, не забывайте о своих соседях, они тоже используют Wi-Fi и вы можете мешать друг другу. Поэтому первым делом зайдите в настройки Wi-Fi вашего роутера и попробуйте изменить используемый Wi-Fi канал и ширину канала, это может помочь, рисунок ниже демонстрирует где находятся эти настройки в роутерах TP-Link.
Настройки Wi-Fi в роутере TP-Link
Если не помогло, то не стоит паниковать, сейчас многие домашние роутеры и компьютеры могут работать в двух диапазонах: 2.4 и 5 ГГц, если вы используете диапазон 2.4 ГГц, то перейдите на режим 5 ГГц и наоборот. Если и это не помогло, то попробуйте перезагрузить ваш роутер по питанию и снова проверить (сделать reboot). Не помогло? Тогда делаем reset или сброс роутера к заводским настройкам. Когда вы купили и поставили роутер на нем были заводские настройки, затем вы его настроили или вам его кто-то настроил, reset возвращает роутер к тем конфигурациям, которые у него были прямо из коробки, то есть роутер нужно будет настроить заново. Обычно сброс роутера к заводским настройкам можно сделать при помощи вдавленной в корпус кнопки на задней панели, для этого нужно взять иголку или спичку и зажать эту кнопку на 5-10 секунд, если все сделано правильно, роутер начнет мигать своими лампочками как сумасшедший.
Если процедура перезагрузки или сброса роутера к заводским настройкам помогает на какое-то время, а потом снова все становится плохо, то это повод задуматься о замене домашнего маршрутизатора, это выйдет дешевле, чем нести его в ремонт, особенно, если гарантийный срок истек. Если все вышеописанные действия не помогают, то попробуйте проверить связь по Wi-Fi с роутером другим устройством и оцените результат.
Если после всех процедур вы убедились, что связь по Wi-Fi всё равно плохая, попробуйте подключить компьютер к роутеру при помощи провода и не беда, если у вас нет обжимного инструмента, в любом компьютерном магазине продаются соединительные UTP патч-корды.
В общем, соедините свой ПК с маршрутизатором при помощи провода и снова проверьте связь при помощи команды Ping. Если провода помогли, то у вас какие-то проблемы с Wi-Fi каналом (может быть сама среда распространения забита, может это модуль вашего ПК, а может и роутер).
Если же ваш компьютер изначально был подключен к маршрутизатору проводом, то не спешите переключаться на Wi-Fi, для начала попробуйте перезагрузить сетевую карту ПК и маршрутизатор, это может помочь. Проблема сохранилась? Тогда посмотрите на заднюю панель роутера, в простых домашних роутерах там есть один WAN-порт, в который включен кабель провайдера и несколько LAN-портов для подключения устройств локальной сети (домашний роутер — это на самом деле три очень урезанных устройства: Wi-Fi антенна, роутер и сетевой коммутатор, иногда это еще и устройство физического уровня, которое называется модем, например, если провайдер предоставляет вам связь по ADSL, про разницу между хабами, коммутаторами и роутерами можно прочитать здесь). На рисунке ниже показана задняя панель моего маршрутизатора.
Домашний Wi-Fi маршрутизатор TP-Link Archer C20
Синий порт — это WAN, желтые порты — LAN. Для начала просто попробуйте включить-выключить кабель из портов своего роутера и компьютера, а затем повторите пинг, если не помогло, то со стороны роутера попробуйте переключиться в другой порт, например, ваш ПК был включен в первый порт роутера, попробуйте переключить его во второй, если не поможет, то продолжаем диагностику.
Нам нужно проверять линию (будем считать, что у нас дома нет инструментов для монтажа и диагностики медных линий): для начала осмотрите провод на наличие физических повреждений, сильных изгибов и сжатий. Например, мой кот, когда был маленьким, очень любил грызть провайдерский кабель, дома все мои устройства были подключены по Wi-Fi, поэтому не было никаких проблем в том, чтобы отрезать поврежденный кусок провода и перенести роутер, правда таким образом он переехал из зала в прихожую.
Видимых повреждений нет, но при пинге от ПК до роутера есть потери, попробуйте подключить компьютер другим проводом, купить медный патч-корд нужной длины — не проблема. Проблема сохранилась — поробуйте подключиться другим устройством и пропинговать роутер. Если все равно всё плохо, то, вероятно, проблема с роутером. Более точно мы это сможем выяснить, при помощи нашего провайдера.
Проверяем интернет канал, который предоставляет нам провайдер при помощи утилиты Ping
Когда мы подключаемся к интернет-провайдеру, он нам сообщает сетевые настройки, либо говорит: настраивайте свое устройство на динамическое получение IP-адреса. В любом случае обычно мы получаем от провайдера следующие сетевые настройки:
- IP-адрес для нашего устройства, которое будет включено в сеть провайдера.
- Маску подсети.
- Основной шлюз. Основной шлюз, который нам дает провайдер — это IP-адрес провайдерского маршрутизатора, через этот маршрутизатор провайдер нас выпускает в Интернет.
- Два DNS-сервера — основной и запасной.
IP-адрес основного шлюза, выданный провайдером, поможет нам диагностировать не только интернет-канал, предоставляемый провайдером, но и домашние сетевые устройства. Для начала давайте посмотрим как мы можем проверить канал, предоставляемый провайдером, по которому мы выходим в Интернет, при помощи команды ping, открываем командую строку и пишем: ping -w 20 -l 1472 -n 100 -f 188.44.112.129. В моем случае IP-адрес 188.44.112.129 — это IP-адрес основного шлюза, который выдал провайдер, 100 пакетов будет более чем достаточно, ну а время ожидания удаленного узла 20 мс взято с запасом. По среднему времени ответа от основного шлюза трудно сказать конкретно, всё дело в том, что между провайдерским роутером и вашим устройством может быть несколько десятков коммутаторов, но в любом случае это время должно быть порядка нескольких миллисекунд, вот так это выглядит в моем случае:
[php]
Ответ от 188.44.112.129: число байт=1472 время=2мс TTL=254
Ответ от 188.44.112.129: число байт=1472 время=2мс TTL=254
Ответ от 188.44.112.129: число байт=1472 время=2мс TTL=254
Ответ от 188.44.112.129: число байт=1472 время=2мс TTL=254
Ответ от 188.44.112.129: число байт=1472 время=2мс TTL=254
Ответ от 188.44.112.129: число байт=1472 время=2мс TTL=254
Ответ от 188.44.112.129: число байт=1472 время=2мс TTL=254
Ответ от 188.44.112.129: число байт=1472 время=2мс TTL=254
Ответ от 188.44.112.129: число байт=1472 время=3мс TTL=254
Статистика Ping для 188.44.112.129:
Пакетов: отправлено = 100, получено = 100, потеряно = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = 1мсек, Максимальное = 12 мсек, Среднее = 2 мсек
C:\Users\Dell>
[/php]
Среднее время 2 мс вполне неплохо для домашнего интернета. Чуть было не забыл, перед тестированием убедитесь в том, что от вас нет большой сетевой активности: выключите торренты и прочие программы, съедающие сетевые ресурсы. Потери или постоянный большой разброс по времени при пинге может возникать из-за большой загрузки канала.
Вернемся к нашей схеме, где есть домашний роутер, который подключен к провайдеру и компьютер, который подключен к роутеру. Сначала попробуйте пропинговать основной шлюз с роутера (сейчас многие домашние роутеры имею встроенный набор утилит для диагностики), вот так это выглядит у меня.
Пингуем основной шлюз провайдера с домашнего роутера
Если при пинге с роутера потерь нет и нет проблем с временем ответа сервера, то вам нужно проверять свою локальную сеть и выяснять с чем там проблемы, проблемы могут быть: с сетевым программным обсечением вашего ПК, с каналом связи между ваши роутером и ПК, а также физическими интерфейсами, образующими этот канал (LAN-порт роутера, сетевая карта ПК и ее драйвера, медная линия, соединяющая роутер и ПК, и наконец проблема с Wi-Fi).
Если же с роутера наблюдаются потери, то первым делом вам нужно исключить роутер и подключить провайдерскую линию непосредственно в свой ПК, настроиться и повторно пропинговать основной шлюз провайдера, если потерь нет, то это повод задуматься о смене роутера. Если потери есть и вы выполнили все пункты, описанные ранее, то это уже повод звонить вашему провайдеру.
Но зачем мы делали все эти пинги, если в итоге выявили проблему у провайдера? Во-первых, чаще всего проблема пользователя находится в локальной сети пользователя, особенно это касается домашней сети: на домашний ПК постоянно что-то устанавливается, неопытные пользователи постоянно нажимают куда-то не туда и скачивают что-то не то, домашний роутер на самом деле вовсе никакой не роутер, а его некачественное и сильно урезанное подобие, которое ориентировано на то, чтобы выйти из строя сразу после окончания гарантии производителя, и еще много других факторов. Но мы делали пинги не для этого, тут начинается, во-вторых, пинги мы делали чтобы собрать статистику, которая так или иначе может подтвердить проблему на стороне провайдера.
Поэтому всё что мы намерили, нам надо будет сохранить в текстовый файл и каждую статистику подписать (откуда и куда мы пингуем), затем набрать номер тех. поддержки, оставить заявку на некачественное предоставление услуги, спросить у специалиста колл-центра номер заявки, а также почту, на которую затем можно будет выслать снятую статистику, которая продемонстрирует специалисту тех. поддержки наличие проблемы в его зоне ответственности. Если вы сделаете так, то ваша проблема будет решена гораздо быстрее.
Также стоит упомянуть о ситуациях, когда проблемы с доступом в Интернет возникают периодически: например, каждый день примерно в одно и то же время и в одно и то же время заканчиваются. Будет хорошо, если вы сможете предоставить два варианта статистики: один в момент возникновения проблемы, второй — когда проблемы нет, а также не забудьте зафиксировать время, когда проблема начинается и когда заканчивается, затем эти данные нужно будет предоставить провайдеру, опять же, это значительно ускорит решение проблемы.
Сейчас мы не будем говорить про использование утилиты Ping для проверки отдельных ресурсов и серверов в сети Интернет, во-первых, по этому поводу будет отдельная публикация, во-вторых, команда Ping – не лучшее для этих целей средство, как минимум, есть такие утилиты как tracert, traceroute, tracetcp, mtr и WinMTR, pathping, но это из простого, есть и более сложные вещи.
Простые советы и рекомендации по использованию утилиты Ping при сетевой диагностики
Мы близки к завершению и тут следует дать несколько советов и рекомендаций по использованию утилиты Ping для диагностики компьютерной сети. Откровенно говоря, команда пинг — не самое лучше средство сетевой диагностики, её можно использовать для быстрой проверки доступности сетевых ресурсов. Например, вы является сетевым администратором точек сети быстрого питания, у вас 15 точек, на каждой точке есть Интернет, тогда вы можете написать простой скрипт или воспользоваться уже готовым, этот скрипт будет пинговать удаленные точки и оповещать вас, если пинг прервется, тем самым у вас максимально оперативно будет информация о том, что на одной из точек пропал интернет. Для более глубокого анализа есть другие программы.
Теперь, собственно, о самих советах. Во-первых, не забывайте, что не всегда удаленный узел будет отвечать на ваши ICMP-запросы, всё зависит от уровня паранойи администратора удаленного узла, поэтому если у вас не пингуется сайт в интернете, это еще не значит, что сайт не работает, возможна ситуация, при которой удаленный узел просто не отвечает на ICMP, проверьте сайта браузером, если он не открылся, воспользуйтесь каким-нибудь онлайн сервисом по проверки ресурсов в сети Интернет, если он отвечает, что сайт недоступен, то вам нужно обратиться к владельцам сайта.
Бывают обратные ситуации, когда пинг до сайта проходит, но зайти вы на него не можете, во-первых, изучите коды ответов HTTP сервера, проблем не обнаружили, а браузер вам сообщает, что истекло время ожидания? Тогда воспользуйтесь утилитой tracetcp, сделайте трассировку по протоколу TCP с указанием 80 порта в том случае, если сайт работает по протоколу http, если же сайт работает по https, то делайте трассировку по 443 порту. Есть большая доля вероятности, что такая трассировка прервется на вашем же ПК или роутере, если она прошла дальше, то сравните трассировку сделанную по tracetcp и tracert/traceroute, если разница только в последнем хопе (нескольких последних хопах), то надо обращаться в владельцам сайта/сервера/сервиса.
Вообще, может быть ситуация, когда ваш IP просто заблокирован на удаленном узле, если действительно блокировка по IP, то удаленный узел вам просто не будет отвечать на пинги, также вы не увидите удаленный узел в трассировке. Иногда бывают более изощренные блокировки, в результате которых вы можете пинговать удаленный узел, но воспользоваться услугами этого узла вы не сможете, это надо уточнять у администрации сайта.
Также утилиту Ping можно с большой осторожностью использовать для оценки потерь и задержек до удаленного узла, хотя для этих целей лучше использовать другие средства, но сейчас мы говорим про Ping. Во-первых, отмечу следующее: если глядя на результат работы команды Ping вам кажется, что всё плохо, а по факту все работает хорошо, то, вероятно, вы просто не знаете о том, как настроен удаленный узел на работу с ICMP, скорее всего, все действительно хорошо.
Во-вторых, если при пинге удаленного узла вы наблюдаете потери, а в тех случаях, когда ответ приходит, время ответа очень сильно разнится, например, первый ответ получен с временем ожидания 20 мс, второй ответ получен с временем 70мс, третий потерялся, четвертый тоже, пятый пришел через 40мс, а шестой через 100 мс, то это повод в первую очередь воспользоваться более информативными утилитами.
В-третьих, если наблюдается систематическая потеря пакетов, например, постоянно теряется каждый 10 пакет, но при этом время ожидания всегда примерно одинаковое, то, вероятно, это по происходит по той причине, что удаленный узел так настроен и проблем нет.
Четвертый момент связан с балансировкой в крупных сетях и с коммерческим/юридическим взаимодействие провайдеров и других крупных игроков: зачастую вы и удаленный ресурс, на который вы хотите попасть, пользуетесь услугами разных интернет провайдеров:
- Маршрут, который проделывает пакет в сторону удаленного узла при каждом пинге может быть разным, так как в этом самом интернете есть дорогие маршрутизаторы, которые каждую секунду пропускают через себя десятки/сотни гигабит трафика, на этих маршрутизаторах может работать балансировка, благодаря которой первый ваш пакет пойдет налево, а второй направо, но в итоге они все равно доберутся до конечного узла, правда немного разными путями. Будем называть маршрут от нашего ПК до удаленного узла маршрутом «Туда».
- А маршрут пакета от удаленного узла до нашего мы будем называть маршрут «обратно». Очень часто маршрут «туда» и маршрут «обратно» не совпадают, соответственно, различно и время, которое тратится на то, чтобы добраться «туда», а потом прийти «обратно», но в результатах работы команды Ping мы видим только суммарное время: «туда» + «обратно», к тому же мы не знаем есть ли где-то балансировка и как вообще идет пакет.
Относитесь к результатам диагностике при помощи команды Ping с осторожностью и всегда проверяйте эти результаты более сложными утилитами, хотя лучше всего Ping использовать лишь для проверки доступности хорошо известных вам узлов, как это было описано в самом начале данного раздела.
Выводы
Какие выводы можно сделать о команде Ping в общем и ее реализации в операционных системах семейства Windows в частности. Давайте в начале по Windows. Если сравнивать реализацию пинга в Windows с реализацией команды ping в Linux, то виндовая реализация однозначно проигрывает по своему функционалу, пожалуй, это всё, что нужно отметить. Если же говорить о команде ping в общем, то стоит понимать ее назначение — эта утилита предназначена для проверки доступности удаленных узлов/серверов, а также для проверки потерь пакетов и задержек, то есть для косвенной оценки качества работы сети передачи данных. Для более глубокой диагностики потребуется более специализированный софт.
Чтобы правильно интерпертировать результаты работы команды ping нужно не только знать как работает эта утилита, но и понимать как работают компьютерные сети в целом и в частности некоторые протоколы и сетевые устройства, а это уже немного сложнее, чем писать слово ping в командной строке.
Ping – утилита командной строки, которая нужна для проверки подключения к другому компьютеру на уровне IP. Принцип работы очень простой: команда ping ip отправляет серию небольших пакетов данных на указанное устройство, а затем показывает время ответа.
Ping – основная команда TCP/IP, которая используется для устранения неполадок подключения, доступности и разрешения имени. Она также позволяет узнать имя и IP-адрес компьютера.
Синтаксис команды ping
Команда ping в Windows имеет следующие параметры, которые позволяют решать разные задачи:
ping [/t] [/a] [/n <count>] [/l <size>] [/f] [/I <TTL>] [/v <TOS>] [/r <count>] [/s <count>] [{/j <hostlist> | /k <hostlist>}] [/w <timeout>] [/R] [/S <Srcaddr>] [/4] [/6] <targetname>
Чтобы посмотреть в командной строке (cmd) ping-команды, вызовите справку:
ping /?
На Linux параметры команды отличаются. Чтобы посмотреть доступные опции, выполните в терминале команду:
ping -help
Суть команды ping проста, но примеров ее использования очень много. Давайте посмотрим, что можно делать с ее помощью.
Комьюнити теперь в Телеграм
Подпишитесь и будьте в курсе последних IT-новостей
Подписаться
Простая проверка доступности
Это то, что делали многие пользователи, – пинговали популярные ресурсы, чтобы убедиться, что интернет на их компьютере работает. Эта же команда используется для проверки доступности.
Пример запроса:
ping google.com // вместо домена можно указать IP-адрес
Windows отправит только 4 запроса, после чего выдаст статистику для указанного адреса. Можно убрать это ограничение, указав параметр -t.
Чтобы прервать отправку и получить статистику, нажимаем сочетание клавиш Ctrl+C.
По умолчанию команда ping IP-адреса на Linux посылает пакеты, пока вы не прервете их отправку вручную с помощью сочетания клавиш Ctrl+C. Чтобы ограничить количество, укажем нужное число. Например:
ping -c 3 google.com // будет отправлено 3 пакета
Изменение интервала между отправкой пакетов
По умолчанию пакеты отправляются с интервалом в одну секунду. Но можно установить другое время.
ping -i 5 IP-адрес // 5 секунд между отправкой пакетов ping -i 0.2 IP-адрес // 2 миллисекунды между отправкой пакетов
Для установки значений меньше 0.2 секунды требуются права суперпользователя (sudo).
Массовая отправка пакетов для нагрузочного тестирования
Эта возможность также доступна только суперпользователям:
ping -f IP-адрес // за секунду будут отправлены сотни тысяч запросов
Изменение размера пакета
По умолчанию размер пакета – 32 байта. Можно установить другой размер:
$ ping -s 100 IP-адрес // значения указываются в байтах
Включение звукового сигнала
Если ответа от хоста нет, отправляем эту команду:
Затем начинаем искать причину сбоя. После ее устранения воспроизведется звуковой сигнал. Он говорит о том, что хост теперь отвечает.
Вывод статистики ping
Чтобы не засорять терминал лишней информацией, пропустим ответы хоста и сразу получим статистику:
А можно, наоборот, получать статистику выполнения без прерывания команды. Для этого нужно нажать сочетание клавиш CTRL + |.
One of the most handy tools for testing connectivity to remote hosts is the ping utility found in most operating systems. Named after sonar pinging, the tool sends Internet Control Message Protocol (ICMP) packets to a remote host and measures the time it takes to get there and back, helping you determine if a host is online and if there are problems reaching that host. The default packet size should be sufficient for most cases, but it’s possible to change it to meet your specific testing needs.
Step 1
Open a terminal window so you can work from the command line.
Step 2
Type «ping -s » and press enter. Windows users will need to use «-l» instead of «-s.» The default packet size is 56 bytes for Linux and Mac pings, and 32 bytes in Windows. The actual packet size will be slightly larger than what you enter due to the addition of the ICMP header information attached to the ping.
Step 3
Stop the pings by pressing «ctrl+c» («^c» in Mac OS X).
The ping command is one of the most used commands by IT professionals to test the network connection. With the ping cmd, we can send a small data packet to a computer, server, or another network device to check the connectivity.
This ping cmd not only tells us if we can reach the device over the network but also how long it took and if packets were lost or not. This information tells us something about the quality of the network connection.
The ping cmd is a simple command to use, in this article, I will give you some tips to get more out of it.
In this article
How to use the Ping Command
With the ping cmd, we can quickly check if a computer is able to access the internet. In the steps below we will send a ping test command to the servers of Google.
You can run the ping cmd from every terminal, like Command Prompt, and PowerShell.
Running a Ping on Windows
- Open the Start Menu or press Windows key + R
- Type cmd and press enter
- In the command prompt, type:
ping 8.8.8.8
and press enter - Examine the result of the ping command:
What we see in the results are the replies from the DNS server (8.8.8.8) of Google. The ping cmd has sent four packages of 32 bytes (which is really small and it took 10ms to send the package and receive the acknowledgment.
The TTL indicates the package’s time-to-live. If the response from Google takes longer than 118ms then the package is discarded.
On the last lines, we will see the statics of the command, in total, there are 4 packages sent, all four are received and none was lost. On average, it took 11ms to receive the response.
Ping Command Options
The basic ping command will do fine for small and simple tests, but with some options, you can make the ping cmd more useful for troubleshooting potential network problems.
Ping -t – Continuous Ping CMD
The ping -t command is the Continuous Ping CMD, something I use pretty often. Let’s say you want to restart your router, now you can repeatedly press F5 to check if the router is back online.
With the ping -t
cmd, you can let the ping run continuously, so you can see when the router is offline and when it comes back online.
❯ ping -t 192.168.1.1 Pinging 192.168.1.1 with 32 bytes of data: Reply from 192.168.1.1: bytes=32 time=1ms TTL=64 Reply from 192.168.1.1: bytes=32 time=1ms TTL=64 Reply from 192.168.1.1: bytes=32 time=5ms TTL=64 Reply from 192.168.1.82: Destination host unreachable. # Router Offline Reply from 192.168.1.82: Destination host unreachable. # Router Offline Reply from 192.168.1.1: bytes=32 time=6ms TTL=64 # Router back online Reply from 192.168.1.1: bytes=32 time=1ms TTL=64 Reply from 192.168.1.1: bytes=32 time=5ms TTL=64 Ping statistics for 192.168.1.1: Packets: Sent = 8, Received = 6, Lost = 2 (25% loss), Approximate round trip times in milli-seconds: Minimum = 1ms, Maximum = 8ms, Average = 4ms
As you can see in the results above, the host (router in this case) was for a brief moment unreachable and then came back online.
Ping -l – Increase package size
If you are troubleshooting network issues it’s sometimes a good idea to increase the packet size that is sent during the ping. Some network problems only occur when more data is sent. With the ping -l
(L) command you can change the size of the packets.
C:\>ping -l 1024 192.168.1.1 Pinging 192.168.1.1 with 1024 bytes of data: Reply from 192.168.1.1: bytes=1024 time=1ms TTL=64 Reply from 192.168.1.1: bytes=1024 time=1ms TTL=64 Reply from 192.168.1.1: bytes=1024 time=3ms TTL=64 Reply from 192.168.1.1: bytes=1024 time=1ms TTL=64
Here we are sending packets of 1024 bytes to the router with IP Address 192.168.1.1.
Ping -n – Number of Pings
With the ping -n
command you can specify the number of pings you want to run. So instead of the default 4 or the continuous ping with -t, you can ping a host 10 times for example. Not something I really use often, but it might come in handy if you have some performance issue that you want to check.
ping -n 10 192.168.1.1
Ping -a – Resolve the hostname
We can also use the ping cmd to resolve the name of the device that is using an IP Address. This feature is great if you want to know which device is using a particular IP Address.
Let’s say we want to know which device is using the IP Address 192.168.1.25. For this, we can use the ping -a
command:
ping -a 192.168.1.25 # Result Pinging tado.localdomain [192.168.1.25] with 32 bytes of data: Reply from 192.168.1.25: bytes=32 time=2ms TTL=64 Reply from 192.168.1.25: bytes=32 time=4ms TTL=64 Reply from 192.168.1.25: bytes=32 time=1ms TTL=64
As you can see in the results, the IP Address 192.168.1.25 belongs to Tado.
Troubleshoot network issues with cmd ping
The ping test cmd is primarily used to troubleshoot network-related issues. Before we can troubleshoot we first need to have a good understanding of our network layout.
Taking the example above, let’s say we are working on the laptop and we want to test if we have a good wireless network connection.
The first thing we do is ping the Router at 192.168.10.254. You can find the IP Address of your router by typing ipconfig
in the command prompt or PowerShell window:
Check if you can reach the router by typing:
# replace the IP Address with the address of your router ping 192.168.10.254
This command will send 4 packets of 32 bytes from your computer to the router. During the ping you will see the results of each packet that is sent and a summary:
Pinging 192.168.10.254 with 32 bytes of data: Reply from 192.168.10.254: bytes=32 time=1ms TTL=64 Reply from 192.168.10.254: bytes=32 time=1ms TTL=64 Reply from 192.168.10.254: bytes=32 time=1ms TTL=64 Reply from 192.168.10.254: bytes=32 time=1ms TTL=64 Ping statistics for 192.168.10.254: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 1ms, Maximum = 1ms, Average = 1ms
As you can see in the results we have a successful connection to the router. All the packages arrived.
The next step is to ping the modem, at 192.168.0.1. If we can reach the modem as well, then the last step is to ping something on the internet.
Ping Google cmd
The easiest option to test if you can reach the internet is to ping Google. We can ping the IP Address of one of the DNS servers from Google at 8.8.8.8.
# Ping Google cmd ping 8.8.8.8 # Result Pinging 8.8.8.8 with 32 bytes of data: Reply from 8.8.8.8: bytes=32 time=10ms TTL=118 Reply from 8.8.8.8: bytes=32 time=15ms TTL=118 Reply from 8.8.8.8: bytes=32 time=10ms TTL=118 Reply from 8.8.8.8: bytes=32 time=10ms TTL=118 Ping statistics for 8.8.8.8: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 10ms, Maximum = 15ms, Average = 11ms
You can also test all the network devices with one command, pathping. This will test every hop between your computer and the network device that you try to reach.
Reading the Ping Results
So if we look at the result above, we see some different values, but what do they all mean? By default, ping will send 4 packets of 32 bytes to the requested IP address. For each packet we see the result, in this case, 192.168.10.254 has replied in 1ms.
Reply from 192.168.10.254: bytes=32 time=1ms TTL=64
- Bytes indicate the size of the packet that was sent. We can change this by using the -l switch.
- Time is how long it took for the response to come back (latency), in this case, 1ms.
- TTL is how long a packet should live (Time to Live). This is not in ms, but how many hops a network packet can take before it’s dropped. Each hop (network device) that the packet comes through lowers the TTL until it reached 0. This is to protect your network from an endless loop of network packages that couldn’t find their destination.
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
At the end of the result, we see how many packets were sent in total and how many of them were lost. You want a 0% loss, of course, if you start losing the package then you should narrow it down to find in which part of the network the loss occurred.
Now, this was a simple internal network test. A response time of 1 ms for your home network is what you want. Any longer indicates that something isn’t optimal.
Ping Latency
You can use ping to check if you can reach a host, but most of the time when you are troubleshooting a network you are more interested in the ping latency. The lower the latency the faster the connection is between you and the host. A ping time of 100ms is really high, between 10ms and 20ms is more common.
The amount of latency you have depends on a lot of factors. Are you connected to WiFi or cable? What kind of internet connection do you have? Where are you located compared to the host geographically?
There are a few general guidelines when it comes to latency:
- Your latency should be steady. If you have a lot of fluctuation in the ping latency, then the network, workstation, or host can’t handle the traffic (or you are on a 4G network… )
- The internal network should be at 1ms with a max of 3ms.
- A good latency to a public server is in general between 7ms and 20ms.
C:\>ping lazyadmin.nl Pinging lazyadmin.nl [104.24.99.228] with 32 bytes of data: Reply from 104.24.99.228: bytes=32 time=10ms TTL=57 Reply from 104.24.99.228: bytes=32 time=11ms TTL=57 Reply from 104.24.99.228: bytes=32 time=11ms TTL=57 Reply from 104.24.99.228: bytes=32 time=10ms TTL=57 Ping statistics for 104.24.99.228: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 10ms, Maximum = 11ms, Average = 10ms
Take for example this site, which is hosted in the United States. If I ping it from my current location in the Netherlands, I have a ping of 10ms. Which is absolutely perfect.
If you have a high or inconsistent latency you really should check this article, where I talk more about optimizing your router to get the best performance.
Finding network issues with the Ping Cmd
If you have network issues your first start is probably to ping the server that you can’t reach. But that isn’t really helpful, yes you probably get the result Destination host unreachable but that doesn’t tell you much. Only that you can’t reach the server in question.
You want to know where the problem is, now you can ping each hop (network device) between you and the server, but there is an easier way. With pathping you can ping each hop between you and the server, showing you exactly where the connection is lost.
Read more about pathping and how to use it in this article.
Wrapping Up
Ping is a really easy-to-use command that is available on almost every device. Even some routers have built-in ping tools that you can use to troubleshoot your network. Keep an eye on the latency, that is one of the most important values from the ping cmd results.
If you have any questions, just drop a comment below!